9 Role Assignments

JurgenLerner

Classi“cation is the key to understand large and complex systemsthat are made
up of many individual parts. For example in the study of food webs (networks
that consist of living organismsand predator-prey relationships, "ow of protein,
etc.) it is, even for moderately small eccsystems,impossibleto understand the
relationship between each pair of individual organisms. Nevertheless, we can
understand the system ...to a certain extent ...by classifying individuals and
descibing relationshipson the class level. Classi“cation in networks aims to de-
scribe regular patterns of interaction and to highlight essenial structure, which
remains stable over long periods of time.

In this chapter we formalize the classi“cation of vertices in a graph, suc
that verticesin the same classcan be considered to occupy the same position,
or play the same role in the network. This idea of network position or role,
seee. g., Nadel [436], has been formalized “r st by Lorrain and White [394] by
a special type of vertex partition. They proposedthat verticesplay the same
role if they have identical neighborhoods. Subsequeh work like Sailer [501] and
White and Reitz [579] genemrlized this ealy de“nitio n, weakening it su cien tly
to make it more appropriate for modeling social roles. All thesede”nitions have
in common that vertices which are claimed to play the same role must have
something in common w.r.t. the relations they have with other vertices,i.e., a
generic problem de“nitio n for this chapter can be given by

given a graph G = (V,E),
“nd a partition of V that is compatible with E.

The genericpart hereis theterm scompatible with E«. In this chapter, we presert
de“nitio ns for such compatibilit y requirements, and properties of the resulting
classesof vertex-partitio ns.

Outline of this chapter. The remainder of this section treats preliminary nota-
tion. In Sections 9.1 through 9.3, di erent types of role assgnments are intro-
duced and investigated. In Section 9.4 de" nitions are adapted to graphs with
multiple relations (seeDe"“nitio n 9.4.1) and in Section 9.5 compositio n of rela-
tions is introduced and its relationship to role assgnments is investigated.
Sections 9.1 through 9.3 follow loosely a common patter n: After de“ning
a compatibilit y requirement, some elemertary properties of the so-de“ned set
of role assgnment are mentioned. Then, we investigate a partial ordering on
this set, present an algorithm for computing speci‘c elemens, and treat the
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complexity of some decision problems. We provide a short conclusion for each
type of vertex partition, where we dwell on the applicability for de“ning role
assgnmentsin empirical networks.

The most complete investigation is for regular equivalencesin Section 9.2.
Although thereis some scepticism asto whether regular equivalencesare a good
formalization of role assgnmentsin real social networks, we have chosento treat
them prominently in this chapter, since their investigation is exemplary for the
investigation of types of role assgnments. The results for regular equivalences
are often translatable to other types of equivalences,often becoming easieror
eventrivial. We emphasizethis generality when appropriate.

Graph model of this chapter. In this chapter, graph usudly meansdirectedgraph,
possbly with loops. Except for Sections 9.2.4 and 9.2.5, where graph means
undirected graph, Section 9.3.1, where results are for undirected multig raphs,
and Sections 9.4 and 9.5, where we consider graphs with multiple relations (see
De" nition 9.4.1).

9.0.1 Prelimin aries

In the following, we will often switch between vertex partitio ns, equivalence
relations on the vertex set, or role assgnments, since, depending on the context,
same point of view will be more intuitiv e than the other. Here we establish that
theseare just three di er ent formulations for the same underlying concept.

Let V be a set. An equivalence relation  is a binary relation on V that
is re” exive, symmetric, and transitive, i.e., v. v, u v impliesv u, and
u v$v wimpliesu w,forallu,v,w V.Ifv Vthen[v]:={u;u v}
is its equivalence class

A partition P = {C4,...,Ck} of V is a set of non-empty, disjoint subsets
Ci V, called classesor blacks such that V = :(:1 Ci. That is, eath vertex
vV isin exactly one class.

If is an equivalencerelation on V, then the set of its equivalence classes
is a partition of V. Conversely, a partition P inducesan equivalencerelation by
de“ning that two vertices are equivalert i they belong to the same classin P.
Thesetwo mappings are mutually inverse.

De“nition 9.0.1. A role assignment for V is a surjective mappingr: V.~ W
onto some setW of roles.

The requirement surjective is no big loss of genemlit y since we can alwaysrestrict
a mapping to its imageset One could alsothink of role assgnments as vertex-
colorings, but note that we do not require that adjacert vertices must have
di er ent colors. We usethe terms role and position synonymously.

_ A role assigiment de“nes a partition of V by taking the inverse-images
rSi(w) := {v. V;r(v)= w},w W asclasses.Conversely an equivalence
relation inducesa role assignment for V by the class mapping v & [v]. These
two mappings are mutually inverse, up to isomorphism of the set of roles.

We summarize this in the following remark.
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Remark 9.0.2. For each partition thereis a unique assciated equivalencerela-
tion and a unique assaiated role assgnment and the same holds for all other
combinations.

For the remainder of this chapter, de“nitio ns for vertex partitio ns translate
to assaiated equivalence relations and role assgnments.

9.0.2 Role Graph

The image set of a role assgnment can be supplied naturally with a graph
structure. We de“ne that rolesare adjacert if there are adjacen verticesplaying
theseroles:

De“nition 9.0.3. Let G=(V,E) beagraphandr:V W a role assignment.
The rolegraph R = (W, F) is the graph with vertex set W (the set of roleg and
edgeset F W x W de*ned by

F:={(r(u),r(v)); u,v V suchthat(u,v) E} .
R is also called quotient of G overr.

The role gaph R models roles and their relations. It can also be seenas a
smaller model for the original graph G. Thus, a role assgnment can be seenas
some form of network compresson. Necessaty, some information will get lost
by such a compresson. The goal of role analysisisto “ nd role assgnments such
that the reailting role graph displays essential structural network properties,
i.e, that not too much information will get lost.

Thus we have two di er ent motivations for “nding good role assignmerts.
Fir st to know which individuals (vertices) are ssimilare. Secand to reduce network
complexity: If a network is very largeor irregular, we canst capture its structure
on the individual (vertex) level but perhaps on an aggregatd (role) level. The
hope is that the role graph highlights essenial and more persistent network
structure. While individuals come and go, and behave rather irregularly, roles
are expectedto remain stable (at leastfor a longer period of time) and to display
a more reguar pattern of interaction.

9.1 Stru ctural Equivalence

As mentioned in the introduction, the goal of role analysisis to “ nd meaningful
vertex partitio ns, where smeaningfuls is up to some notion of compatibilit y with
the edgesof the graph. In this secion the most simple, but also most restrictive
requiremert of compatibilit y is de“ned and investigated. Lorrain and White
[394] proposed that individuals are role equivalent if they are related to the
same individuals.

De"nition 9.1.1. LetG=(V,E) beagraph,andr:V W arole assignment.
Then, r is called strong structural if equivalent vertices havethe same(out- and
in-)neightorhoods, i. e., if for all u,v V

r(uy=r(v)= N*(u)= N*(v) and NS(u)= NS(v) .
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Remember Remark 9.0.2: De" nitions for role assgnmentstranslate to assaiated
partitio ns and equivalencerelations.

Remark 9.1.2. By De€" nition 9.0.3 it holds for any role assgnment r that, if
(u,Vv) is an edge in the graph, then (r(u), r(v)) is an edgein the role graph. If
r is strong structural, then the converseis alsotrue. This is even an equivalent
condition for a role assgnment to be strong structural [579. That is, a role
assignment r is strong structural if and only if for all u,v  V, it holds that
(r(u),r(v)) is an edge in the role graph if and only if (u,Vv) is an edge in the
graph.

We present some examples for strong structural equivalences.T he identit y
mapping id: V V; v & v is strong structural for each graph G = (V,E)
independent of E. Some dlightly lesstrivial examples are shown in Figure 9.1.
For the star, the role assgnment that maps the certral vertex onto one role
and all other vertices onto another, is strong structural. The bipartition of a
complete bipartite graph is strong structural. The complete graph without loops
has no strong structural role assigyment besidesid, since the neighborhood of
ead vertex v is the only one which does not contain v.

Fig. 9.1. Star (left), complete biparti te graph (middle) and complete graph (ri ght)

We note someelementary properties. A class of strong structurally equivalent
verticesis either an independent set (inducesa subgraph without edges)for the
graph or a clique with all loops. In particular, if two adjacen verticesu, v are
strong structurally equivalent, thenboth (u, v) and (v, u) are edgesof the graph,
and both u and v have a loop.

The undirecteddistance of two str ucturally equivalent (non-isdated) vertices
is at most 2. For if u and v are structurally equivalent and u has a neighbor w
then w is also a neighbor of v. Thus, structural equivalence can only identify
vertices that are near each other.

Although in most irregular graph there wonet be any non-trivial structural
equivalence, the set of structural equivalencesmight be huge. For the complete
graph with loops, every equivalenceis structural. In Section 9.1.2, we investigate
a partial order on this set.

Variations of structural equivalence. The requrement that strong structurally
equivalent adjacent vertices must have loops has beenrelaxed by some authors.



220 J. Lerner

De“nition 9.1.3 ([191]). An eguivalence  on the vertex set of a graph is
called structural if for all vertices u v the transposition of u and v is an
automorphism of the graph.

White and Reitz [579] gave a slightly dier ent de“nitio n, which coincides
with De"nitio n 9.1.3 on looplessgraphs.

9.1.1 Lattic e of Equivalence Relations

The set of equivalencerelations on a set V is huge. Here we show that this set
naturally admits a partial order, which turns out to be a lattice. (For more on
lattice theory, seee.qg., [261].) This section is preliminary for Sections 9.1.2 and
9.2.2.
Equivalence relations on a set V are subsets of V x V, thus they can be
partially ordered by set-inclusion ( 1 2i 1 2). The equivalencerelation
1 is then called “ner than , and » is caled coarser than ;. This partial
order for equivalencestranslatesto assaiated partitions and role assgnments
(seeremark 9.0.2).
In partially ordered sets, two elemerts are not necessarilycomparable. In
same caseswe can at least guaranteethe existence of lower and upper bounds.

De“nition 9.1.4. Let X be a set that is partially ordered by andY X.

y X is called an upper bound (a lower bound) for Y if for all y Y,
y vy .

y X is called the supremum (in“mum) of Y, if it is an upper bound
(lower bound) and for each y X that is an upper bound (lower bound) for
Y,itfollomsy y (y Yy ). The second condition ensures that suprema and
in“ma (if they exst) are unique.

The supremum of Y is denoted by sup(Y) the in“mum by inf(Y). We also
write sup(X, y) or inf(x, y) instead of sup({x, y}) or inf({x, y}), resgectively.

A lattice is a partially ordered set L, such that for all a,b L, sup(a,b) and
inf(a,b) exist. sup(a,b) is also called the join of a and b and denoted by a b.
inf(a,b) is also called the meet of a and b and denoted by a $ b.

If ,and , aretwo equivalencerelationson V, then their intersection (as
sets)isthein‘mum of 1 and . The supremum is slightly more complicated.
It must contain all pairs of verticesthat are equivalert in either ; or ,, but
also verticesthat are related by a chain of such pairs: The transitive closure of
arelation RV x V is de“ned to be therelation SV x V, where for all
uv V

uSv k , Wig,...,Wx V sud that
u=wy, v=wg, and i=1,...,kS 1itiswiRwj:

The transitive closure of a symmetric relation is symmetric, the tr ansitive closure
of a re”exive relation is re’exive and the transitive closure of any relation is
transitiv e.
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It follows that, if ; and , are two equivalencerelations on V, then the
transitive closure of their union is the supremum of 1 and 5.
We summarizethis in the following theorem.

Theorem 9.1.5. The set of equivalence relations is a lattice.

The interpretation in our cortext is the following: Given two equivalence
relations idertifying vertices that play the same role, there exists a uniquely
de“ned smallest equivalenceidentifying all vertices which play the samerole in
either one of the two original equivalences. Moreover, there exists a uniquely
de“ned greatest equivalencedistinguishing betweenactors which play a di er ent
role in either one of the two original equivalences.

9.1.2 Latti ce of Structural Equi valences

It can easily beveri“ed that if 1 and , aretwo strong structural equivalences
for a graph, then so are their intersection and the transitive closure of their
union.

Proposition 9.1.6. The set of strong structural equivalences of a graph is a
sublattice of the lattice of all eguivalence relations.

In particular there exist always a maximum structural equivalence (MSE) for a
graph.
The property of being strong structural is presered under re“nemert:

Proposition 9.1.7. If 1 , and » isa strong structural equivalence, then
sois .

Although the above proposition is very simple to prove, it is very useill, since
it implies that the set of all structural equivalencesof a graph is completely
descibed by the MSE. In the next section we presert a linear time algorithm
for computing the MSE of a graph.

9.1.3 Computa tion of Structur al Equivalences

Computing the maximal strong structural equivalencefor a graph G = (V,E)
is rather straight-forward. Each vertex vV partitions V into 4 classes(sane
of which may be empty): Vertices which are in N* (v), in NS (v), in both, or in
none.

The basic idea of the following algorithm 21 is to compute the intersection
of all these partitions by looking at each edge at most twice. This algorithm
is an adaption of the algorithm of Paige and Tarjan [459 Paragraph 3] (see
Section 9.2.3) for the computation of the regular interior, to the much simpler
problem of computing the MSE.

The correctnessof algorithm 21 follows from the fact that it dividesexacty
the pairs of verticeswith non-identical neighborhoods.

An e cien t implemertation requiressome datastructures, which will be pre-
serted in detail sincethis is a good exercise for understanding the much more
complicated algorithm in Section 9.2.3.
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Algori thm 21: Computation of the maximal strong structural equivalence
(MSE) of a graph
Input : agraph G=(V,E)
begin
maintain a partition P = {C4,...,C} of V, which initially is the complete
partition P = {V}
/I at theend, P will bethe MSE of G
foreach vV do
for each classC to which a vertex u N* (v) bdongs to do
create a new classC of P
move all verticesin N* (v) C fromC to C

if C has becane empty the n
L remove C from P

for each class C to which a vertex u N ° (v) bdongs to do
create a new classC of P
move all vertices in N®(v) C from C to C
if C has becane empty the n
L remove C from P

end

...A graph G = (V,E) must permit accessto the (out-/in-)incidence list of a
vertex v in time proportional to the size of this list.

...Scanning all elemerts of a list must be possiblein linear time.

...An edgemust permit accesdo its sourceand its target in constart time.

...A partition must allow insertion and deletion of classesin constant time.

...A classmust allow insettion and deletion of verticesin constant time.

...A vertex must permit accessto its classin constart time.

The requirements on partitions and classesare achieved if a partition is repre-
serted by a doubly linked list of its classesand a classby a doubly linked list of
its vertices.

One re“nemernt step (the outer loop) for a given vertex v is performed as
follows.

1. Scan the outgoing edgesof v. For each such edge (v, u), determine the class
C of u and create an asscaciated block C if one does not already exist. Move
ufromCtoC.

2. During the scanning, create a list of thoseclassesC that are split. After the
scanning processthe list of split classes.For each such classC mark C as
no longer being asscaiated with C and eliminate C if C is now empty.

3. Scan the incoming edgesof v and perform the same steps as above.

A loop for a given v runs in time proportional to the degreeof v, if v is
non-isolated and in constant time else. An overall running time of O(|V| + |E])
follows, which is also an asymptotic bound for the space requiremert.



9 Role Assignments 223

Conclusion. Structural equivalence is thearetically and computationally very
simple. It ismuch too strict to be applied to irregular networks and only vertices
that have distance at most 2, can be identi“ed by a structural equivalence.
Nevertheless,structural equivalence is the starting point for many relaxations
(seeChapter 10).

9.2 Regular Equivalence

Regular equivalence goes back to the idea of structural relatedness of Saller
[501], who proposed that actors play the same role if they are connected to
role-equivalent actors ...in contrast to structural equivalence, where they have
to be connectedto identical actors. Regular equivalencehas “rst been de“ned
precisely by White and Reitz in [579]. Borgatti and Everett (e.g., [191]) gave
an equivalent de" nition in terms of colorings (here called role assgnments). A
coloring is regular if verticesthat are colored the same, have the same colors
in their neighborhoods. If r: V W is a role assgnment and U V then
r(U):={r(u); u U} iscadled therole set of U.

De“nition 9.2.1. A roleassignmentr:V W iscaledregular if for all u,v
\Y

ru)=r(v) = r(NT(u)=r(N*(v)) and r(NS(u) = r(NS(v)) .

The righthand side equaions are equaions of sets. There are many more equiv-
alent de“nitions, (seee.g., [579 90]).

Regular role assgnments are often considered as the classof role assgnments.
The term regular is often omitted in literature.

Regular equivalence and hisimulation. Marx and Masuch [40§ pointed out the
closerelationship betweenregular equivalence,bisimulation, and dynamic logic.
A fruitful approac to “ nd good algorithms for regular equivalenceis to have a
look at the bisimulation liter ature.

9.2.1 Elementary Properties

In this section we note some properties of regular equivalencerelations.

The identity mapping id: V V; v & v isreguar for all graphs. More
gererally, every structural role assgnment is regular.

The next proposition characterizeswhen the complete partition, which is
induced by the constant roleassgnment J: V  1lisregular. A sink is a vertex
with zero outdegree,a saurce is onewith zeroindegree.

Proposition 9.2.2 ([82]). The complete partition of a graph G = (V,E) is
regular if and only if G contains neither sinks nor sources or E =
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Proof. If : If E = then the righthand sidein de“nition 9.2.1 issimply =
thus each role assignment is regular. If G has neither sinks nor saurces,then, for
alv VvV, J(N*(v)) = J(NS(v)) = {1} and the equations in De“nition 9.2.1
are satis' ed for all u,v V.

Only if: Suppose E = andletv V beasink. SinceE = there exists
u V with non-zero outdegree.But then

JINT(v)) = ={1} = J(N"(u)) ,

but J(u) = 1= J(v), thusJ is not reqular. The caseof G containing a sourceis
treated analogously.

The identity and the complete partition are called trivial role assgpnments.
The next lemma is formulated in [190] for undirected connected graphs, but it
has a gereralization to strongly connected (directed) graphs.

Lemma 9.2.3. Let G be a strongly connected graph. Then in any non-trivial
role assignment r of G, neither {r(v)} = r(N*(v)) nor {r(v)} = r(N°(v))
holds for any vertex v.

Proof. If for some vertex v it is {r(v)} = r(N*(v)), then the same would
needto be true for each vertex in N* (v). Henceeach vertex in successie out-
neighborhoods would be assgnedthe samerole and since G is strongly connected
it follows that r(V) = {r(v)} contradicting the fact that the role assignmer is
non-trivial. The case of {r(v)} = r(N S (v)) for some vertex v is handled equaly.

A graph with at least 3 verticeswhoseonly reguar roleassgnmentsare trivial
is called role primitive. T he existenceof directedrole primitiv e graphsis trivial:
For every directed path only the identity partition is regular. Directed graphs
which have exactly the identity and the complete partition asregular partitions
are for example directed cyclesof prime lengh, since every non-trivial regular
equivalenceinducesa non-trivial divisor of the cycle lengh.

The existence of undirected role primitiv e graphs is non-trivial.

Theorem 9.2.4 ([190]). The graphin Figure 9.2 is role primitive.

Fig. 9.2. A role-primitive undirected graph

The proof goes by chedking that all possble role assgnments are either non
regular or trivial, where one can make useof the fact that the pending paths of
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the graph in Figure 9.2 largely diminish the possibilities one has to follow. The
proof is omitted here.

A graph in which any role assigiment is regular is called arbitrarily role-
assignable The next lemma is formulated in [190] for undirected connected
graphs.

Lemma 9.2.5. A strongly connected graph G = (V,E) is arbitrarily role-
assignable if and only if it is a complete graph, possibly with some but not nec-
essarily all loops

Proof. Let G =(V,E) be a graph satisfying the condition of the lemma and let
r be any role assgnment. We have to show that for all verticesu,v V

ru)=r(v)= r(N*(u)=r(N*(v)) and r(NS(u)) = r(NS(v)) .

If u= v this is trivial. Otherwise u and v are connected by a bidirected edge,
i.e, the role sets of their in- and out- neighborhoods contain r(u). These role
sets alsocortain all other rolessince u and v are connectedto all other vertices.
So the role sets of the in- and out- neighborhoods of both verticescontain all
roles, whencethey are equal.

Conversely let G = (V,E) be a graph with two verticesu and v, such that
u=vand (uv) E.WeassignV \{v} oneroleandv adi erert one. This
is a non-trivial role assgnment (note that n > 2, since G is connected) with
r(u)= r(N*(u)) . So by Lemma 9.2.3 this role assgnment canst be reguar.

9.2.2 Latti ce Structure and Regular Interior

We have seenthat the set of regular equivalencesof a graph might be huge.
In this section we prove that it is a lattice. Seethe de“nitio n of a lattice in
Section 9.1.1.

Theorem 9.2.6 ([82]). The set of all regular equivalences of a graph G forms
a latti ce, where the supremum is a restriction of the supremum in the latti ce of
all equivalences.!

Proof. By Lemma 9.2.7, which will be shown after the proof of this theorem
it suces to show the existence of suprema of arbitrary subsets. The identity
partition is the minimal elemert in the set of regular equivalences,thusit isthe
suprenmum for the empty set. Hencewe needonly to considerthe supremum for
non-empty collections of regular role assigiments. Sincethe setof all equivalences
of a graph is “nite, it even su ces to show the existenceof the supremum of two
regular equivalences.

Solet ; and , be two regular equivalenceson G. De“ne % to be the
transitive closure of the union of ; and ».

As merntionedin Section 9.1.1, % s the supremum of 1 and ; in the lattice
of all equivalences,so it is an equivalence relation and it is a supremum of ;

! For the in“m um see proposition (9.2.9).



226 J. Lerner

and , with respectto the partial order (which is the same in the lattice of all
equivalencesand in the lattice of regular equivalences).Therefore it remainsto
show that % is regular.
For this suppose that u % v and let x N™*(u) for u,v,x V. Sinceu %v
there exists a sequenceu, wo, ..., W51,V V whereu j, wp,j1 { 1,2}. Since
j, isregular and x  N*(u), there existsan x, V suc that x, N7 (w,)
and x2 j, x. Iterating this will “nally produce an xx sudh that x,  N*(v)
and x % X, which shaws the condition for the out-neighborhood. The case
x NS (u) is handled analogotsly.

For the proof of Theorem 9.2.6 we needthe following lemma (seee.qg., [261]).

Lemma 9.2.7. Let (X, ) be a partially ordered set. If supH exsts for any
subsetH X, then (X, ) is a lattice.

Proof. All we haveto show isthat for X,y X there existsinf(x,y). Let H :=
{z X;z xandz y}.Thenonecan easily verify that supH isthe in“mum
of {x, y}.

Corollary 9.2.8. If G is a graph then there exists a maximum regular equiva-
lence and there exists a minimum regular equivalence for G.

Proof. The maximum is simply the supremum over all reqular equivalences.Du-
ally, the minimum is the in“m um over all reqular equivalences.Or easier: The
minimum is the identit y partition which is always regular and minimal.

Altho ugh the supremum in the lattice of regular equivalencesis a redriction
of the supremum in the lattice of all equivalences,the in“m um is not.

Proposition 9.2.9 ([82]). The lattice of regular eguivalences is not a sublattice
of the lattice of all equivalences.

Proof. We show that the in“mum is not a restriction of the in“mum in the
lattice of all equivalences(which is simply intersection). Consider the graph in
Figure 9.3 and the two regular partitionsP; := {{ A,C,E}, {B,D}} and P, :=
{{A C},{B,D,E}}. Theintersection of P; and P, is P = {{ A, C}, {B, D},
{E}}, which is not regular.

Fig. 9.3. Meet is not intersection
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The fact that the supremum in the lattice of regular equivalencesis a restric-
tion of the supremum in the lattice of all equivalencesimplies the existence of a
maximum regular equivalencewhich lies below a given (arbitrary) equivalence.

De"nition 9.2.10. Let G beagraphand an equivalence relation on its vertex
set An equivalence relation ; is called the regular interior of if it satis‘es
the following three conditions.

1. ,is regular,
2. 1 ,and
3. for all , satisfying the above two conditions it holds , 1.

Corollary 9.2.11. Let G heagraphand an eguivalence relation on its vertex
seé. Then the regular interior of  exsts.

On the other hand there is no minimum regular equivalence above a given
equivalence in gereral (which would havebeen called a regular closure or regular
hull).

Proof. For the “r st part, let G = (V,E) be a graph and be an (arbitrary)
equivalence on the node set. Then the supremum over the set of all regular
equivalencerelations that are “ner than isthereguar interior of

For the secand part recdl the example in the proof of Prop. 9.2.9 showvn in Fig-
ure9.3). It is easy to verify that the reqular partitionsP, := {{ A, C,E}, {B, D}}
and P, = {{A, C}, {B,D,E}} are both above the (non-regular) partition
P:={{A C}, {B,D}, {E}} and are both minimal with this property.

Thereguar interior is described in more detail in [90]; its computation istreated
in Section 9.2.3. The in“m um (in the lattice of regular equivalencerelations) of
two regular equivalencerelations ; and 5 is given by the regular interior of
the intersectionof 1 and ».

9.2.3 Computa tion of Regular Interior

The reguar interior (see De" nition 9.2.10) of an equivalence relation is the
coarsestregular re“nement of . It can be computed, starting with , by a
number of re“nement stepsin each of which currently equivalent vertices with
non-equivalent neighborhoods are split, until all equivalent vertices have equiv-
alent neighborhoods. For an example of such a computation seeFigure 9.4. The
running time of this computation dependsheavily on how thesere‘nement steps
are organized

In this secion we presert two algorithms for the computation of the reg-
ular interior. CATREGE [83] is the most well-known algorithm in the social
network liter ature. It runs in time O(n®). Tarjan and Paige [459 preseried a
sophisticated algorithm for the relational coarsest partition problem, which is
essemially equivalent to computing the regular interior. Their algorithm runsin
O(mlogn) time and is well-known in the bisimulation liter ature. See[408] for
the relationship betweenbisimulation and regular equivalence.
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Fig. 9.4. Computation of theregular interior: initial partition (left), “ rst step (middle)
second and “nal step (right)

CATREGE. In [83], Borgatti and Everett proposed CATREGE as an algo-
rithm for computing the maximal regular equivalence of a graph, or more gen-
erally for computing the regular interior of an equivalencerelation. CATREGE
runs in O(n3). On a high-level view CATREGE proceedsas follows:

...CATRE GE maintainsin each re‘nement step a current partition P, which is
initia lly setto the complete partition (or alternatively to an arbitr ary input
partition).

...In eat re“nement step it tests, for each pair of equivalent vertices (w.r.t.
P), whether their neighborhoods are equivalent (w.r.t. P). If so, then these
vertices remain equivalent, otherwise they will be non-equivalent after this
re‘nement step.

...The algorithm terminatesif no changeshappen.

The number of re“nement stepsis bounded by n, since in ead re“nement step
(except the last) the number of equivalence classesgrows by at least one. The
running time of one re“nement stepis in O(n?).

The Relational Coarsest Partition Problem. This sectionis taken from
[459, although we translate the notation into the context of graphs.

Problemde“nition. The RELATIONAL COARSEST PARTITION PROBLEM
(RCPP) has as input a (directed) graph G = (V,E) and a partition P of the
vertex set V.

_For asubsetS V wewriteE(S):={v V; u Ssud that uEy} and
ESXS):={u V; v Ssud that uEy}. FortwosubsetsB V andS V,
B is called stable with respectto S if either B ES1(S),or B ES(S)= .If
P is a partition of V, P is called stable with respectto S if all of its blocks are
stable with respectto S. P is called stable if it is stable with respect to each of
its own blocks.

The RCPP is the problem of “nding the coarseststable re*nement for the
initia | partition P.

In the language of role assgnments this condition means that for ead two
roles, say r; and r,, either no vertex, or all vertices assignedr; has/have an
out-going edgeto a vertex assignedr,. Thisisthe sout-parte in De" nition 9.2.1.
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T he algorithm of Paige and Tarjan [459 runs in time O(m logn) and space
O(m + n). Especidly for sparse graphs this is a signi“cant improvement over
CATREGE.

Paige and Tarjan already pointed out that it is possble to generalize their
algorithm to handle a bounded number of relations. This generlization can
be realized in such a way that it yields asymptotically the same running time
(seee.g., [207]). Having done this one can apply the algorithm to compute the
coarseststable re“nement with respectto E and ET to obtain the regular interior
(see D€' nition 9.2.10).

The Split function. The algorithm usesa primitiv e re‘'nement operation. For
each partiton Q of V and subset SV, let Split (S,Q) be the re‘nement
of Q obtained by replacing each block B of Q such that B E®%(S) = and
B\E®'(S)= bythetwoblocksB := B E®!(S)andB := B\ E®(S). We
call S a splitter of Q if Split (S,Q) = Q. Notethat Q is unstable with respect
to Sif and only if S is a splitter of Q.

We note the following properties of Split and consequence®f stability. Let
S and Q be two subsetsof V, and let P and R be two partitio ns of V. The
following elemenary propertiesare stated without proof.

Property 9.2.12. 1. Stability is inherited under re“nemernt; that is, if R is a
re‘nement of P and P is stable with respectto aset S, then soisR.

2. Stability is inherited under union; that is, a partitio n that is stable with
respect to two sets is also stable with respect to their union.

3. Function Split is monotone in its secand argument; that is, if P is are“ne-
ment of R then Split (S,P) isare'nement of Split (S,R).

4. Function Split is commutative in the sensethat the coarsestre” nement of
P stable with respectto both S and Q is

Split (S, Split (Q,P)) = Split (Q, Split (S,P)) .

Basic algorithm. We begin by descrbing a naive algorithm for the problem. The
algorithm maintains a partition Q that is initially P and is re“ned until it is
the coarseststable re” nement. The algorithm consists of repeating the following
step until Q is stable:

Refin e: Find a set S that is a union of some of the blocks of Q and is
a splitter of Q; replaceQ by Split (S, Q).

Some obervations. Since stability is inherited under re“nement, a given set S
can be usedas a splitter in the algorithm only once. Since stability is inherited
under the union of splitter s, after setsare used as splitter s their unions cannot
be used as splitter s. In particular, a stable partitio n is stable with respectto the
union of any subset of its blocks.

Lemma 9.2.13. The algorithm maintains the invariant that any stable re"ne-
ment of P is also a re‘nement of the current parti tion Q.
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Proof. By induction on the number of re“nement steps. The lemmais tr ue ini-
tially by de“nitio n. Suppose it is true before a re‘nement step that re‘nes par-
titio n Q using a splitter S. Let R be any stable re“nement of P. Since S is a
union of blocks of Q and R is are“nement of Q by the induction hypothesis, S
is a union of blocks of R. HenceR is stable with respect to S. Since Split is
monotone, R = Split (S,R) isare‘nement of Split (S,Q).

The following theorem givesanother proof for the existenceof the regular interior
(seeCorollary 9.2.11).

Theorem 9.2.14. The re“nement algorithm is correct and terminates after at
most n S 1 steps having computed the unique coarsest stable re" nement.

Proof. The asserion on the number of steps follows from the fact that the num-
ber of blocks is between1 and n. Once no more re“nemert steps are possible,
Q is stable, and by Lemma 9.2.13 any stable re“nement isare“nement of Q. It
follows that Q is the unique coarseststable re“nement.

The above algorithm is more general than is necessay to sdve the problem:
There is no need to use unions of blocks as splitter s. Redricting splitter s to
blocks of Q will alsosu ce. However, the freedam to split using unions of blocks
is one of the crucial ideas neededin developing a fast version of the algorithm.

Preprocessing. In an e cien t implemertation of the algorithm it it useful to
reduce the problem instanceto one in which [E({v})] 1forallv V (thatis
only to verticeshaving out-going edges). To do this we preprocessthe partition
P by splitting each block B into B := B ES(V)and B := B\ ESY(V). The
blocks B will never be split by the re“nement algorithm; thus we can run the
re“nement algorithm on the partition P consisting of the set of blocks B . P
is a partition of the set V. := ESY(V), of size at most m. The coarseststable
re‘nement of P together with the blocks B isthe coarseststable re” nement of
P. The preprocessingand postpr ocessingtake O(m+ n) time if we have available
the preimage set ES1(v) of each element v V. Hencebrth, we shall assume
[E({v})| 1forallv V. Thisimpliesm n.

Running time of the basc algorithm. We can implemert the re“nement algo-
rithm to run in time O(mn) by storing for each element vV its preimage set
ES1(v). Finding a block of Q that is a splitter of Q and performing the appro-
priate splitting takes O(m) time. (Obtaining this bound is an easy exercisein
list processing) An O(mn) time bound for the entir e algorithm follows.

Improved algorithm. To obtain a faster version of the algorithm, we needa good
way to “nd splitter s. In additio n to the current partition Q, we maintain another
partition X such that Q is a re“nement of X and Q is stable with respect to
every block of X (in Section 9.3.4, Q will be called a relative regular equivalence
w.r.t. X). Initially Q = P and X is the complete partitio n (containing V asits
single block). The improved algorithm consists of repeating the following step
until Q = X:
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Refin e: Find a block S X that is not a block of Q. Find a block
B Q suththat B S and |B| |S|/2. ReplaceS within X by the
two sets B and S\ B; replaceQ by Split (S\ B, Split (B, Q)).

T he correctness of this improved algorithm follows from the correctness of the
original algorithm and from the two ways given previously in which a partition
can inherit stability with respect to a set.

Spcial case: If E is a function. Before discussingthis algorithm in general,
let us consider the special casein which E is a function, i.e., |E({v})| = 1 for
all v V. In this case,assune that Q is a partitio n stable with respect to a
set S that is a union of some of the blocks of Q, and B S is a block of Q.
Then Split (B, Q) is stable with respectto S\ B as well. This holds, since if
B, is a block of Split (B,Q), By  E®(B) implies By E®(S\B) = |,
and By ESY(S)\ ES1(B) impliesB: ES1(S\ B). It follows that in each
re“nement step it suces to replace Q by Split (B, Q), since Split (B, Q) =
Split (S\ B, Split (B, Q)). This is the idea underlying Hopcroftes sprocessthe
smaler halfe algorithm for the functional coarsestpartitio n problem. There‘ning
set B is at most half the size of the stable set S containing it.

Back to the gereral case. In the more general relational coarsestpartition prob-
lem, stabilit y with respectto both S and B doesnot imply stabilit y with respect
to S\ B, and Hopcroftes algorithm cannot be used. This is a serious problem
sincewe cannot ao rd (in terms of running time) to scan the set S\ B in order
to perform one re“nement step. Nevertheless,we are still able to exploit this
idea by re‘ning with respectto both B and S\ B using a method that explicitly
scansonly B.

A preliminary lemma. Considera general step in the improved re“nemernt algo-
rithm.

Lemma 9.2.15. Suppose that partition Q is stable with respect to a set S that
is a union of some of the blocks of Q. Suppose also that partition Q is re*ned
“rst with respect to a block B S and then with regect to S\ B. Then the
following conditions hold:

1. Re'ning Q with respect to B splits a block D Q into two blocks D; =
D E°Y(B)andD,=DSD;i D E®YB)= andD\E®S!(B)=

2. Re'ni ng Split (B, Q) with respect to S\ B splits D; into two blocks D3 =
D, ES}(S\B)andD;;=D;SDyui Dy ES}S\B)= andD;\
ES(S\ B) =

3. Re'ni ng Split (B, Q) with respect to S\ B does not split D».

4. D1 = D; (ESY(B)\ ESY(S\ B)).

Proof. Conditions 1 and 2 follow from the de“nitio n of Split . }
Condition 3: Form Condition 1 it followsthat if D is split, it isD ES%(B) =
. Since D is stable with respectto S, and sinceB  S,thenD, D E®*(S).
Sinceby Cond. 1D, E®SY(B)= it followsthat D, ES(S\ B).
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Condition 4: This follows from the fact that D, Egl(B) and Dy, =
D;\ ESY(S\ B).

Performing the threeway splitting of a block D into D11, D12, and D, asde-
scribed in Lemma 9.2.15is the hard part of the algorithm. Identity 4 of Lemma
9.2.15 is the crucial obsenation that we shall use in our implementation. Re-
member that scanning the set S\ B takes (possibly) too long to obtain the
claimed running time. We shall need an additio nal datastructure to determine
D;\ESYS\B)= (D E®(B))\ ES(S\ B) by scanning only B.

Running time of the improved algorithm. A given elemern of V is in at most
log, n+ 1 dier ent blocks B usedasre“ning sets,since ead successie sut setis
at most half the size of the previous one. We shdl descibe an implemertation of
the algorithm in which a re‘nement step with respect to block B takes O(|B| +

u B [E>1({u})]) time. From this an O(mlogn) overall time bound for the
algorithm follows by summing over all blocks B usedfor re“nement and over all
elemerts in sud blocks.

Datastructures. (SeeSection 9.1.3 for an example of a much simpler algorithm
which already usessome of the ideas of this algorithm.)

Graph G = (V,E) isrepreseited by the sets V and E. Partitio ns Q and X
are represerted by doubly linked lists of their blocks.

A block S of X is called simple if it contains only a single block of Q (equal
to S but indicated by its own recad) and compound if it contains two or more
blocks of Q.

The variousrecads are linked together in the following ways. Each edge uE v
points its source u. Each vertex v points to a list of incoming edgesuEv. This
allows scanning the set ES1({v}) in time proportional to its size. Each block
of Q has an assaiated integer giving its sizeand points to a doubly linked list
of the verticesin it (allowing deletion in O(1) time). Each vertex points to the
block of Q corntaining it. Each block of X points to a doubly linked list of the
blocks of Q contained in it. Each block of Q points to the block of X containing
it. We also maintain a set C of compound blocks of X. Initially C corntains the
single block V, which is the union of the blocks of P. If P contains only one
block (after the preprocessing, P itselfis the coarseststable re“nement and we
terminate the algorithm here.

To make three-way splitting (seeLemma 9.2.15) fast we needone more col-
lection of records. For each block S of X and each element v ES%(S) we
maintain an integer Count (v,S) := |[S E({v})|. Each edge uEv with v S
contains a pointer to Count (u, S). Initia lly there is one count per vertex (i. e,
Count (v,V)= |[E({v})|) and each edgeuEV points to Count (u, V).

This Count function will help to determine the setES1(B)\ ES1(S\ B) in
time proportional to [{uEv; v B}| (seestep 5 below).

Both the space neededfor all the data structures and the initialization time
is O(m).

The re“nement algorithm consists of repeating re“nement steps until C is
empty.
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Performing one re‘nement step. For clarity we divide one re“nement step into
7 substeps.

1. (select a re“ni ng block). Remove some block S from C. (Block S is a
compound block of X.) Examine the “r st two blocks in the list of blocks of Q
containedin S. Let B be the smaller one. (Break a tie arbitr arily.)

2. (up date X). Remove B from S and create a new (simple) block S of X

containing B asits only block of Q. If S is still compound, put S back into C.

3. (compute ES1(B)). Copy the verticesof B into a temporary setB . (This
facilitates splitting B with respect to itself during the re'nement.) Compute
ES1(B) by scanning the edges UEV sud that v B and adding each ver-
tex u in such an edge to ES1(B) if it has not already been added. Duplicates
are suppressedby marking vertices as they are encountered and linking them
together for later unmarking. During the same scan compute Count (u,B) =

{v B ; uEv}, store this cournt in a newintegerand make u point to it. These
counts will be usedin step 5.

4. (re"'ne Q with respect to B). For each block D of Q containing some
elemen (vertex) of E>*(B), split D into D, = D E®'(B) and D, = D\ D;.
Do this by scanning the elemertsof ES1(B). To processan elemert u  ES1(B),
determine the block D of Q cortaining it and create an assciated block D if
one does not already exist. Moveu from D to D .

During the scanning, construct alist of thoseblocks D that aresplit. Afterthe
scanning, processthe list of split blocks. For each such block D with assaiated
block D , mark D as no longer being assaiated with D (so that it will be
correctly processedn subsequeth iterations of Step 4). Eliminate the recad for
D if D is now empty and, if D is nonempty and the block of X containing D
and D has beenmade compound by the split, add this block to C.

5. (compute ESY(B)\E>1(S\B)). Scanthe edgesuEvwith v B . To process
an edge UEv, determine Count (u, B) (to which u points) and Count (u, S) (to

which uEv points). If Count (u,B) = Count (u,S), add uto ES1(B)\ ES(S\

B) if it has not beenadded already.

6. (re'ne Q with respect to S\ B). Proceedexactly asin Step 4 but scan
ES1(B)\ ES1(S\ B) (computed in Step 5) instead of ES1(B).

7. (up date counts). Scan the edgesuEv such that v B . To processand

edgeuEv, decremen Count (u, S) (to which uEv points). If this count becanes
zero, deletethe Count record, and make UEv point to Count (u,B) (to which

u points). After scanning all the appropriate edges,discard B .

Note that in step 5 only edgesterminating in B are scanned. Step5iscorrect
(computes E51(B) \ E>1(S\ B)) sincefor eat vertex u in ESY(B), it holds
that uisin ESY(B)\ ESY(S\ B)i uisnotin ESY(S\ B)i all edges starting
at u and terminating in S terminatein B i Count (u,B) = Count (u,S).

The correctnessof thisimplementation followsin a straightforward way from
our discussiam above of threeway splitting . The time spent in a re*nement step
is O(1) per edgeterminating in B plus O(1) per vertex of B, for a total of
o(Bl+ , g |E®({v})]) time. An O(mlogn) time bound for the ertire algo-
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rithm follows as discussedabove. It is possibleto improve the eciency of the
algorithm by a constant factor by combining various steps, which have beenkept
serarate for clarity.

Adaptati on to Related Probl ems. The above algorithm turnsout to be the
key to ecien tly sdve several partition re“nement problems that arisein this
chapter. We will brie”y sketch this generality.

Computing the maximal strong structural equivalence(as described in Sec-
tion 9.1.3) or the relative reguar equivalence (seeSection 9.3.4) is much simpler
than computing the regular interior. Neverthelesswe can usethe idea of itera-
tively splitting blocks accarding to intersection with certain neighborhoods. (See
algorithm 21 and the commernts in Section 9.3.4.) These problemscan be sdved
by algorithms that run in O(m + n).

Computing the coarsestequitable (seeSection 9.3.1) has beensolved earlier
than the problem of computing the regular interior (see[11(0 for an O(mlogn)
algorithm and the comments in [459).

Re"“ning a partitio n w.r.t. multiple relations (see De"nition 9.4.1) is also
possiblein O(m logn) (if the number of relationsis bounded by a constant). This
extensim of the algorithm can be usedto compute the regular interior w.r.t. in-
coming and out-going edges. Shartly, a partition can be re*ned w.r.t. multiple
relations by performing steps 3...{seeabove) for “xed B and S successiely for
all relations, one at a time. (Seee.g., [207].)

9.2.4 The Role Assignment Problem

In this section we investigate the computational complexity of the decision prob-
lem whether a given graph admits a regular role assgnment with prespect’ ed
role graph, or with prespeci‘ed number of equivalenceclassesin this sectionwe
consider only undirected graphs.

The most complete characterization is from Fiala and Paulusma [209. Let
k and R be an undirected graph, possibly with loops.

Problem 9.2.16 (k-Role Assignment (k-RA)). Given a graph G.
Question: Istherea regular equivalencefor G with exactly k equivalenceclasses?

Problem 9.2.17 (R-Role Assignment (R-RA)). Given a graph G.
Question: Is there a reguar role asspnment r : V(G)  V(R) with role graph
R?

Note that we require role assignments to be surjective mappings.

Theorem 9.2.18 ([209]). k-RA is polynomially solvablefor k = 1 and it is
NP -complete for all k 2.

Theorem 9.2.19 ([209]). R-RA is polynomially solvableif each component of
R consists of a single vertex (with or without a loop), or consists of two vertices
without loops and it is N P -complete otherwise.
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We give the proof of one special caseof the R-Role Assgnment Problem.
Theorem 9.2.20 ([493]). Let Ro be the graph in Figure 9.5. Then Rp-RA is

NP -complete.

Fig. 9.5. Role graph Ry

Proof. It is easyto seethat R-RA isin NP sinceone can easily ched in poly-
nomial time whether a given functionr : vV { 1,2} isa 2-role assgnment with
role graph Rs.

We will show that the 3-satis“ability problem (3SAT) is polynomially trans-
formable to Ro-RA. So let U = {uj,...,uy} be a set of variables and C =
{c1,...,cm} be a set of clauses(ead consisting of exactly three literals). We
will construct a graph G = (V,E) such that G is 2-role assignable with role
graph Rq if and only if C is satis“able.

The construction will be made up of two componerts, tr uth-setting compo-
nents and satisfaction testing componerts (seeFigure 9.6).

Fig. 9.6. Truth-setti ng component for variable u (left); sati sfacti on testing component
for clause {c1,c2,c3} (right) and communication edge if literal ¢; equals u (dashed).
The roles of the vertices in the pending paths are uniquely determined (as indicated
by the labels 1 resp. 2) if the role assigmment should be regular with role graph Ro

For each variable u; U, there is a truth-setting component T; = (V;,E;)
with
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Vi = {ui, U7, a1, a2, @3}
Ei == {uity, ujajs, Urayz, @182, @j2a3} -

Note that, although we write u;T; for the edge { u;, Tj}, the graph is undirected.

The intuition behind the construction of T; is the following: If a graph con-
taining T; asasubgraph (such that the a; areadjacert only to the verticesin V
as speci ed above) admits a regular role assgnment r with role graph Ry, then
necessarilyr(aj1) = 1, since a1 has degee one and a vertex which is assighed 2
must have degee 2. Thenr(aj2) = 2, sincea 1-vertex is adjacert to a 2-vertex
and r(aj2) = 2, since a 2-vertex is adjacern to a 2-vertex. Finally exactly one of
u; or Uy isassgned 2, meaning that variable u; is setto true or false, respectively.
Thus component T; ensuresthat a variable gets either true or false.

For each clause ¢  C, let vertices ¢j1, G2, and ¢z be three vertices corre-
sponding to the threeliteralsin the clausec; . Thenthereis a satisfaction testing
componert §; = (V,, E;) with

Vi ={c¢1,62,¢3,81,82,95} ,
E; = {g1G2,6G16G3,G2G3, G103, G2b s, Gsbys, B2, B2l s} .

The intuition behind the construction of S; is the following: If a graph con-
taining S; as a subgraph (such that the by, are adjacert only to the verticesin
V, as speci' ed above) admits a regular role assgnment r with role graph Ro,
then necessarilyr(lg1) = 1, r(g2) = r(gs) = 2, which ensuresthat one of the
vertices G1, G2, G3 is assignedl, thus ensuring that every adjacert vertex of
this 1-vertex must be assigned 2. This will be crucial later.

The construction so far is only dependent on the number of variables and
clauses.The only part of the construction that depends on which liter als occur
in which clausesis the collection of communication edges. For each clausec =
{Xj1,%j2,%x;3} C the communication edgesemanating from S; are given by

E; = {G1Xj1,G2Xj2,GaXja} .

(The x; are either variablesin U or their negations.) Notice that for each ¢ ,
there is exactly onevertex that is adjacert to ¢ in E; , which is the correspond-
ing literal vertex for ¢k in the clauseg;.

To complete the construction of our instance of Ro-RA, let G = (V,E) with
V being the union of all Vis and all V; s and E the union of all E;s, all E;s and
all E; s.

Ajs mertioned above, given a regular role assignment for G with role graph
Ro, for each j = 1,...,m there is a vertex ¢x sud that r(cx) = 1 implying
that the corresponding adjacert literal is assgned 2. Setting this literal to true
will satisfy clauseg; .

Thus we have showvn that the formula is satis“able if G is regularly Rg
assgnable.

Conversely, suppose that C has a saisfying truth assighment. We obtain an
assignment r: V. { 1,2} asfollows. Foreahhi =1,...,n setr(u;) to 2 (and
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r(uy) to 1) if and only if variable u; is true and set the role of the vertices ay
and bk asimplied by the fact that r should be regular (seeabove). Moreover,
foreachj =1,...,mlet ¢k, k { 1,2 3}, be some vertex whose corresponding
literal in the clause g is true ... sch a k exists since the truth assighment is
satisfying for C. Set r(ck ) := 1andr(g):= 2for| { 1,2,3}, 1= k.

The proof is complicated a bit by the fact that more than one literal in a
clausemight betrue, but setting r(cy ) = 1 is allowed for only onek { 1,2, 3}.
Sincea 2-vertex may be adjacert to another 2-vertex, this does not destroy the
regularity of r.

9.2.5 Existence of k-Role Assignments

We have seenin the previous section that the decisicn whether a graph admits
a reaqular equivalence with exactly k equivalence classesis NP -complete for
generalgraphs. Nevertheless,there are easy-to-verify su cien t, if not necessary
conditions that guaranteethe existence of regular k-role assignments. Briey,

the conditio n is that the graph di er s not too much from a regular graph.

Theorem 9.2.21 ([474]). For all k there is a constant ¢ such that
for all graphs G with minimal degree = (G) and maximal degree = (G)
sdisfying

clog( ) .
there is a regular equivalence for G with exactly k equivalence classes.

To excludetrivial counterexampleswe assumein the following that all graphs
in question have at least k vertices.
For the proof we needa uniform version of the Lovasz Local Lemma.

Theorem 9.2.22 ([25, Chapter 5 Corollary1.2]). Let A;j,i I, be everts
in a discrete probability space. If there exists M such that for everyi |

[{A;j; Aj isnot independent of Aj}] M,

and if there exists p > 0 such that Pr(A;) p for everyi 1, then
epM +1) 1= Pr Ai >0,

wher e is the Eule r number e= ,_, Ui L

Proof (of Theorem 9.2.21). De*ner :V { 1,...,k} asfollows: For every v
V choose r(v) uniformly at random from {1,...,k}.
Forv V,let A, bethe event that r(N(v)) = {1,...,k}. It is

# #
k31$“” . k31$‘®

Pr(Ay) k= -
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Becauseall r(w) are chosenindependently and for a“ xed valuei, the probabilit y

that i is not usedfor any of the verticesadjacert to v is kls(—l 9 “and there
are k choicesfor i.
Also note that A, and A, arenot independert if and only if N(v) N (w) =

Hence,A, with M := (G)2 and p := k kﬁ—l (®) satis* esthe conditio ns of the
Lovasz Local Lemma. T herefore,
# .
k1% © ) A
ek . ( (G)*+1) 1 Pr A, >0. 9.1

v V

If the righthand side of (9.1) holds, there exists at least one r such that
r(N(v)) = {1,...,k} for every vV, that is, there exists at least one regu-
lar k-role assignmert. In order to “nis h the proof we note that the lefthand side
of (9.1) is equivalent to

log(ek( (G)*+1))

K
log =7

(G)

Clearly, there exists a constart ¢ sud that ¢ log( (G)) is greaer than the
righthand side of the above inequality.

Conclusion. Regular equivalencesare well invegigated in computer science Re-
sults indicate that many regular equivalencesexist even in irregular graphs, but
it is unclea how to de“ne and/ or compute the best, or at least a good one. Fast
algorithms exist for the computation of the maximal regular equivalence or for
the reguar interior of an a priori partition. The maximal reguar equivalence
could be meaningful for directed graphs (for undirected it is simply the divi-
sion into isolates and non-isolates). Also, the reguar interior could be a good
role assignment if one has an idea for the partition to be re“ned. Specifying the
number of equivalence classesor the role graph yields NP -hard problems, in
the general case.Optimization approacdes for these problems are preserned in
Section 10.1.7 in the next chapter.

9.3 Other Equivalences

In this secion we brie’y mertion other (than structural or regular) types of role
equivalences.

9.3.1 Exact Role Assignments

In this section we de“ne a class of equivalence relations that is a subset of
regular equivalences. T hese equivalenceswill be called exact. The assaiated
partitio ns are also known as equitable partitions in graph theory, they have “ rst
beende“ned as divisors of graphs.
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While for regular equivalencesonly the occurrence or non-occurrence of a
role in the neighborhood of a vertex matters, for exact equivalences,the number
of occurrence matters.

The graph model of this section are undirected multig raphs.

De"nition 9.3.1. A role assignmentr is called exact if for all u,v VvV

ru=r() = r(N(u)) = r(N(v)) ,

where the last equation is an eguation of multi-sets, i.e., vertices, that have
the same role, must have the same number of each of the other roles in their
neightorhoods.

The coloring in Figure 9.7 de“nes an exact role assigiment for the shown graph.

Fig. 9.7. An exact role assignment

While an equivalenceis regular for a multig raph if and only if it is regular
for the induced simple graph (ead edgeat most once), for exact equivalences
the multiplicit y of an edge matters.

It is straightforward to seethat exact role assignments are regular, the con-
verseis not true.

An equivalent de“nitio n is the following.

De"nition 9.3.2 ([247]). A partition P = {C4,...,Ck} of the vertex set V of
an undirected (multi-)graph G = (V,E) is called equitable if there are integers
bj.i,j =1,...,k, such that each vertex in class C; hasexactly by neightors in
classC;. The matrix B = (b )i j=1,.. x de“nes a (directed) multi-graph, which
is called the quotient of G modulo P, denoted by G/ P.

A partition is equitable if and only if the assciated role assgnment is exact
The above de“nitio n also extends the de“nitio n of the quotient or role graph
(seeSection 9.0.2) to multig raphs. Note that this is possibleonly for exact role
assignnents.

Note that even if the graph is undirected the quotient is possibly directed,
meaning that the multiplicit y of an edge may di er from the multiplicit y of the
reversed edge. T his happens always if two sadjacerts equivalence classesare of
di erent size.

Exact role assgnments are compatible with algebraic properties of a graph.
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Theorem 9.3.3 ([247]). Let G be a graph, P an equitable partition. Then, the
characteristic polynomial of the quotient G/ P divides the characteristic polyno-
mial of G.

This theorem implies that the spectrum of the quotient G/ P is a subset of the
spectrum of G.

The set of all exact role assgpnments of a graph forms a lattice [191]. The
maximal exact role assgnment of a graph can be computed by an adaption of
the algorithm in Section 9.2.3. (See[110] and the commerts in [459].)

Many problems around exact role assgnments are N P -complete as well. For
example the problem of deciding if a graph G admits an exact role assgnment
with quotient R is NP -complete if both G and R are part of the input, or for
some “xed R. This holds, since the NP -complete problem of deciding whether
a 3-regular graph hasa perfect code [37(, can be formulated as the problem of
deciding whether G has an exact role assgnment with quotient

6o 37
R= 12

The quotient over an equitable partitio n has much morein common with the
original graph than, e.g., the role graph over a regular equivalence. Exact role
assignmernts also ensure that equivalent vertices have the same degree,which is
not true for regular role assgnments.

Conclusion. Exact role assgnments, also called equitable partitions are well
investigated in algelraic graph theory. While some problems around equitable
partitio ns are N P -complete, there are e cien t algorithms to compute the max-
imal equitable partitio n of a graph, or to compute the coarsest equitable re-
“nement of an a priori partition. These algorithms could be used to compute
role assignmerts, but, due to irregularities, the results contain in most casestoo
many classesand miss the underlying (possibly pertur bed) structure. Brandes
and Lerner [97] introduced a relaxation of equitable partitio ns that is tolerant
against irregularities.

9.3.2 Autom orphi ¢ and Orbi t Equivalence

Auto morphic equivalenceexpressesnterchangeabilit y of vertices.

De"nition 9.3.4 ([191]). Let G=(V,E) bea graph,u,v V. Then u and v
are said to be automorphically equivalent if there is an automorphism of G
with  (u) = v.

Automorphically equivalent vertices cannot be distinguished only in terms of
the graph structure. Therefore it could be argued that at least automorphically
equivalent vertices should be consideredto play the samerole.

It is easy to seethat structurally equivalent vertices are automorphically
equivalent.
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A partition of the vertex set which hasthe property that each pair of equiv-
alent verticesis automorphically equivalent is not necesarily a regular equiva-
lence. However we have the following result.

Proposition 9.3.5 ([190]). Let G = (V,E) be a graph with automorphism
group A(G), and H < A(G) bea subgroup of A(G). Then assigning roles accord-
ing to the orbits of H de‘nes an exact role assignment for G. Such a partition
is called an orbit partition.

Proof. Let r be a role assignment asin the formulation of the proposition. If
r(u) = r(v) then there exists H such that (u) = v. If x N7*(u), then

(X) N*( (u)) = N*(v). Furthermorer(x) = r( (x)) by de“nitio n. It follows
that r(N* (u)) r(N*(v)) (as multisets). The other inclusion and the corre-
sponding assetion for the in-neighborhoods is shown similar.

In particular, orbit equivalencesare regular.

For example, the coloring in Figure 9.7 de“nes the orbit partition of the
automorphism group of the shavn graph.

The set of orbit equivalencesforms a proper subset of the set of all exact
equivalences,which can be proved by any regular graph which is not vertex-
transitive. For example, the complete partition for the graph in Figure 9.7 is
exact but not an orbit partition.

The above proposition can also be usedto prove that every undirected role
primitiv e graph (see Section9.2.1) is a graph with trivial automorphism group
[190]. This is not true for directed graphs as can be seenby directed cycles of
prime lengh.

Orbit equivalencehas the nice feature that its condition is invariant w.r.t.
a shift to the complemert graph. This doesnot hold neither for regular nor for
exact equivalence.

The computation of orbit equivalencesis related to the problem of computing
the automorphism group which has open complexity status.

Conclusion. Automorphically equivalent vertices cannot be distinguished in
terms of graph structure, but only by additional labels or attr ibutes. It could
therefore be argued that at least automorphically equivalent vertices play the
same role. Computation of automorphic equivalenceseemsto be hard, but, in
irregular networks, there wonet be any signi“ cant automorphisms anyway.

9.3.3 Perfect Equivalence

Perfect equivalenceis a restriction of regular equivalence. It expresseghe idea
that there must be a reasonfor two vertices for being not equivalent.

De"nition 9.3.6 ([191]). A role assignmentr de‘nes a perfect equivalenceif
for all u,v VvV

ru) = r(v) r(N*(u)) = r(N*(v)) and r(NS(u)) = r(NS(v)).



242 J. Lerner

A reqular equivalence is perfect if and only if the induced role graph has no
strong structural equivalent vertices (seeSection 9.1).

The set of perfect equivalence relations of a graph is a lattice [19]], which
is neither a sublattice of all equivalence relations (Section 9.1.1) nor of the lat-
tice of regular equivalence relations (Section 9.2.2). A perfed interior of an
equivalencerelation  would be a coarsest perfect re‘nement of  (compare
De" nition 9.2.10). In contrast to the regular interior, the perfect interior does
not exist in general.

Theorem 9.3.7. In gereral, the transitive closure (see Section 9.1.1) of the
union of two perfect equivalence relations is not perfect. In particular, for some
equivalences there is no perfect interior.

Fig. 9.8. Graph for the proof of Theorem 9.3.7. Supremum of two perfect equivalences
is not perfect

Proof. Consider the graph in Figure 9.8 and the two perfect partitions P; =
{{1,5,{2,6{ 3,4} and P, = {{ 1,2},{5,6 3},{4}} . The transitiv e closure of
P, and P, isP = {{ 1,2,5,6},{3,4}} , which is not perfect.

For the secondstatement, note that P; and P, are both perfect re“nements
of P and are both maximal w.r.t. this property.

The secord statement has a more trivial proof: For a graph with two strong
structurally equivalent vertices,the identit y partition has no perfect re‘nement.
Same decisin problems conceming perfect equivalenceare NP -complete as
well. This can be seenby Theorens 9.2.18 and 9.2.19, restricted to role graphs
without strong structurally equivalent vertices
Although perfect equivalencesrule out some trivial regular equivalences,
there is no evidence why roles shouldnet be strong structurally equivalent.

Conclusion. Perfect equivalence is a restriction of regular equivalence, but it
doesnst seemto yield better role assigmments. Same mathematical properties
of regular equivalencesget lost and there are exanpleswhere the condition on
perfect equivalence rulesout good regular role assgnments.

9.3.4 Relative Regular Equi valence

Relative regular equivalence expresss the idea that equivalent vertices have
equivalent neighborhoods in a coarser, prede“ned measure.
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De"nition 9.3.8 ([90]). Let G = (V,E) be a graph and r: V W and
ro:V Wy be two role assignments. Then, r is called regular relative to rq
if r o (see Section 9.1.1 for the partial order on the set of role assignments)
and for all u,v V

r(u)=r(v) ro(N*(u) = ro(N*(v)) and ro(NS(u)) = ro(NS(v)) .

A typical application [90] of relative regular equivalenceis given by a network
of symmetric friendship tieswhich a priori is divided into two disjoint friendship
cliguesA and B. Assumethat within ead clique every member hasat least one
tie to some other member of the same clique. The partitio n into thesetwo cliques
would be regular if either there is no tie betweenthe two cliques or each actor
would have,in additio n to the intra-group ties, at least onetie to a member of the
other group. But lets assumethat same, but not all, actors have friendship ties
to members of the other group. The partitio n into A and B is no longer regular.
Now we can split ead group into those actors having tiesto some member of
the other group and those who donet. Say we obtain the partition into Az, Az,
B1, and B,. Neither is this partition (in general) regular: There might be sane
actors in, say, A; having intra-group ties only with members of A1, some only
with members of A,, some with both; they donst have equivalent neighborhoods.
But they have equivalent neighborhoodswith respectto the coarsepartition into
A and B. Thus, the partitio n into A1, Az, By and B is regular relative to the
partition into A and B.

Relativ e regularity below a “xed equivalenceis presewved under re“nemert.
(Compare Prop. 9.1.7 for a similar proposition for structural equivalence.)

Proposition 9.3.9. Let , 1,and , beequivalence relationson V such that
1 2and »isregular relativeto . Then sois ;.

Similar to Prop. 9.1.7, this propositio n implies that the set of equivalencesthat
arereguar relativeto a“ xed equivalence isa sublatticeof all equivalencesand
is completely described by the maximum of this set, denotedhereby MRRE( ).

Computing the MRRE( ) is possible in linear time by an adaptation of
the algorithm 21 for computing the maximal structural equivalence:Instead of
splitting equivalence classesfrom the point of view of single vertices, classes
are split from the point of view of the classesof  (compare the algorithm in
Section 9.2.3). Note that the classesof are”xed and the MRRE( ) hasbeen
found after all classesof have beenprocessedonce.

Each re'nement step in the CATREGE algorithm (see Section 9.2.3) com-
putes an equivalencethat isregular relativeto the previous one, but the running
time of one step isin O(n?), which is worsethan the above described algorithm
on sparse graphs.

Conclusion. Relativ e regular equivalenceis computationally simple but it needs
an a priori partitio n of the vertices and, sinceits compatibilit y requiremert is
only local, is not expected to represen global network structure. It has most
been applied in connection with multipl e and composite relations (see, e.g.,
Winship-Pattison Role Equivalencein Section 9.5.1).
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9.4 Graphs wit h Mult iple Relations

Actors in a social network are often connected by more than one relation. For
example, on the set of employeesof a company there might be two relations
GivesOrdersTo and IsFriendOf. It is often insu cien t to trea theserela-
tions separately one at a time since their interdependencematters.

In this section we genemlize the graph model to graphs with multiple rela-
tions, that is, collections of graphs with common vertex set.

De"nition 9.4.1. A graphwith multiplerelations G = ( V,E) consists of a “ni te

where p andE; V x V.

For the remainder of this section we often write egraphe meaning «graph with
multiple relationse. A graph is identi“ed with the one resulting from deleting
duplicaterelations, wherewe say that two relationsareequd if they consist of the
same pairs of vertices. That isrelations donet have slabelse but are distinguished
by the pairs of vertices they contain.

The role graph of a graph with multiple relations is again a graph with
(possbly) multiple relations. (Compare De" nition 9.0.3 of the role graph of a
graph with one relation.)

De"nition 9.4.2. Let G=(V,E) beagraphwith multiple relations, andr: V
W be a role assignment. The role graph of G over r is the graph R = (W, F),
where F = {Fj;i=1,...,p}, where F; = {(r(u),r(v)); (u,v) E;}.

Note that F; may be equal to Fj evenif E; = E; and that duplicate edge
relations are eliminated (F is a set).

From the above de" nition we can seethat role assgnments are actually map-
pings of vertices and relations. That isr:V W de“nes uniquely a mapping
of relationsre: E  F. Note that r doesnot map edges of G onto edgesof
R but relations, i. e. edgesets, onto relations.

Having more then one relation, the possibilities for de“ning di er ent types of
role assighnmernts explode. See[579, 471] for a large number of possibilities. We
will sketch some of them.

The easiest way to translate de“nitio ns for dier ent types of vertex parti-
tions (seeSections 9.1, 9.2, and 9.3) to graphs with multiple relations is by the
following generic de“nitio n.

De"nition 9.4.3. A role assignmentr:V W is said to be of a speci” c type
t for a graph G= (V,E) with multiple relations, if for eachE E , r is of typet
for the graph (V,E).

We illustr ate this for the de“nitio n of regular equivalencerelations.

De"nition 9.4.4 ([579]). Let G=(V,E) beagraph. A role assignmentr: V
W is called regular for Gif for eachE E , r is regular for graph (V,E).
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Besides this natural translation of role assignments from graphs to graphs with
multiple relations there is a weaker form (e.g weak regular network homomor-
phism [579), which makes use of the mapping of relations r .

Theorensfor certain types of vertex partitions (seeSections 9.1, 9.2, and 9.3)
mostly translate to the caseof multiple relations if we apply De“nition 9.4.3.

Next we introduce a stronger form of compatibilit y with multiply relations.
Regular role assgnments as de“ned in De“nition 9.4.4 make sure that equiv-
alent verticeshave, in each of the graphs relations identical tiesto equivalent
counterparts. Sometimes it is considered as desirable that they have the same
combinations of relations to equivalent counterparts. That is, if we consider the
example at the beginning of this section, it matter s whether an individual gives
orders to someane and is the friend of another individual or whether he gives
orders to a friend.

De" nition 9.4.7 formalizesthis. First we needsome preliminary de“nitions:

De"nition 9.4.5 ([579]). Given a graph G=(V,E) and u,v V, we de'ne
the bundle (of relations) from u to v as

Bw={E E;(uv) E}.

Thesebundles de“ne a new graph with multiple relations.

De"nition 9.4.6 ([191, 579]). Let G=(V,E) be a graph and B be the set of
all non-empty bundles. For each bundle B B de“nes a graph with vertex set
V and edgeset Mg where (u,v) Mpg if and only if By, = B. Mg is called a
multiplex relation induced by the graph G = (V,E). Let M = {Mg}g s , then
MPX (G) := (V,M ) is called the multiplex graph of G.

For each pair of vertices (u, V) there is a unique bundle assciated with it.
This bundle may be either empty or a member of B (the set of all hon-empty
bundles). This implies that either (u,v) isa member of no Mg or has only one
such multiplex relation. Thus, the multiplex graph of a graph can be viewed
as a graph with a single relation, but with edge-labels. We call such a graph a
multiplex graph [579]. That is, a multiplex graph is a graph G = (V,M ) such
that for each pair of relations M;,M, M either M; M, = or M; = M,
holds.

For example, the multiplex graph MPX (G) of a graph G, isa multiplex graph.

Now we can de“ne the type of equivalencerelation which ensuresthat equiv-
alert vertices have the same bundles of relations to equivalent counterparts.

De"nition 9.4.7 ([191]). Let G = (V,E) be a graph with multiple relations.
A role assignmentr: V W that is regular for MPX (G) is called multiplex
regular for G.

As in the above de“nitio n one might de“ne multiplex strong structural role
asspnments, but one can easly verify that a strong structural role assgnmert
on a graph (with multiple relations) is necessédly strong structural on the cor-
responding multiplex graph.
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Remark 9.4.8. An equivalent de“nitio n of multiplex regular role assigiments is
given in [83]: Let G=(V,E) be agraph, whereE= {E,,...,Ep}. Let

M = ) Ei;I {1,....,p}, 1=

Then the reguar role assgnments of (V,M ) are exactly the multiplex regular
role assignmrents of G.

Regular role assignments of a graph are in gereral not multiplex reguar.
Regqularity however is presewved in the opposite direction.

Proposition 9.4.9 ([579])). If G = (V,E) is a graph, C := MPX (G), and
r: V.~ W arole assignment then the following holds

1. If r is regular for C thenit is regular for G.
2. If r is strong structural for C then it is strong structural for G.

Proof. For the proof of 1 and 2let E E beareation of Gand letu,v,u V
with (u,v) E andr(u)= r(u). Let By, bethe bundle of relationsof u and v (in
particular E By/)andlet M = {(w,w); Bww = By} bethe corresponding
multiplex relation (in particular (u,v) M).

1. If weassumethat r isregular for C, thereexist vV suchthatr(v) = r(v)
and (u,v) M, in particularitis (u,v) E which showsthe out-part of
regularity for G.

2. If weassunethat r is strong structural for C, then (u,v) M, in particular
it is(u,v) E which showsthe out-part of the condition for r being strong
structural for G.

The in-parts are treated analogoLsly.

9.5 The Semigroup of a Graph

Sacial relations also have an indirectin”uence:If A and B arefriendsand B and
C are enemiesthen this (probably) has some in"uenceon the relation between
A and C.

In this section we want to formalize such higher-order relations and highlight
the relationship with role assgnments.

The following de“nitio ns and theorems can be found, essenially, in [579], but
have beengeneralized here to graphs with multiple relations (seeSection 9.4).

Labeled paths of relations (like EnemyOf AFriend ) are formalized by com-
position of relations; beware of the order.

De"nition 9.5.1. If Q and R are two binary relations on V then the (B oolean)
product of Q with R is denoted by QR and de" ned as

QR = {(u,v); w V suchthat (u,w) Q and(w,v) R} .
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Boolean multiplication of relations corresponds to Boolean multiplica tion of
the assciated adjacency matrices, where for two {0, 1} matrices A and B the
Boolean product AB is de“ned as

8
(AB); = Aik $ By
k=1

It is alsopossibleto de“ne real multiplica tion of weighted relations or multi-
edoe setsby real matrix multiplica tion (this has beenadvocated e. g., in [89]).

De"nition 9.5.2. Let G = (V,E) be a graph (with multiple relations). Then,
the senigroup induced by G is de* ned to ke

S(G)I:{El...Ek;k , E1,...,Ex E} .
We also write S(E) for S(G).

Note that two elements in S(G) are equal if and only if they contain the same
set of ordered pairsinV x V.

Furthermore, note that S(G) is indeeda semigroup since the multiplica tion
of relations is assaiative, i.e, (AB)C = A(BC) holds for all relations A, B,
and C.

In general, S(G) has no neutral elemert, relations have no inverse and the
multiplica tion is not commutative.

Although the length of stringsin the de“nition of S(G) is unbounded, S(G)
is “nite since the number of its elemerts is bounded by 2(0V1*)| the number of
all binary relations over V.

The interesting thing about composite relations is the idertities satis“ed
by them. For example we could imagine that on a network of individuals with
two relations Friend and Enemy, the identities FriendFriend=Friend and
Friend Enemy=E nemyFriend = Enemy hold. At least the fact whether these
identities hold or not gives us valuable information about the network. In all
casesidertities exist necessarilysince S(G) is “nite but the set of all strings
{E1...Ex; Kk ,Ei E} isnot.

Role assighmerts identify individuals. Thus they introduce more idertities
on the semigroup of the graph. The remainder of this section investigatesthe
relationship betweenrole assgnments and the identi” cation of relations.

A role assighment on a graph induce a mapping on the induced semigoup.

De“nition 9.5.3 ([579]). Let G=(V,E) be a graphwith multiple relations and
r.v W a role assignment. For Q  S(G), r(Q) (compare Section 9.4) is
the relation on W de‘ned by r(Q) := {(r(u),r(v)); (u,v) Q} caled the
relation induced by Q and r. Thus r induces a mapping rre; on the semigroup
S(G).

Note that in general r(S(G)) is not the semigroup of the role graph of G
over r, howewer, this is true if r is regular. Role assigyments do not necessaly
presene compostion, i. e., rr is not a serrigroup homomorphism. One of the
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main resuts (seeTheorem 9.5.6) of this secion is that reguar role assgnments
have this property.

Lemma 9.5.4 ([579]). Let G=(V,E) beagaphandr:V W a role as-
signment which is regular with respect to Q and R S(G). Then, r(QR) =
rrel(Q)rrel(R)-

Proof. Let w,w W with (w,w) re(QR). By the de“nitio n of r(QR)
thereexist v,v V sucdhthatf(v)= w,f(v)= w,and(v,v) QR.Therefore
there isavertex u V with (v,u) Q and (u,v) R implying (w,r(u))
re(Q) and (r(c),w) rei(R), whence(w,w) re(Q)rrei(R). We conclude
e (QR) rel(Q)rrel(R). Note that this holds without the assumption of r
being regular.

Conversely let w,w W with (w,w) rNel(Q)rel(R). Then there is a
z W sud that (w,z) re(Q) and (z,w) r(R). By the de“nitio n of
e therearev,v,ug,u,  V with r(v) = w, r(v) = w, r(uy) = r(u) = z,
(viu) Q, and (uz,v) R. Sincer isregular and r(ui) = r(uz) thereis a
vertexv. V with r(v )= f(v)and (ui,v ) R.Itfollowsthat (v,v ) QR
Whence(w,w) = (I’(V),I‘(V )) rrel(QR)v implying rrel(Q)rrel(R) I'reI(QR)-

The next theorem shows that reguar or strong structural on the set of gen
erator relations E implies reguar resp. strong structural on the senigroup S(E).
This is the secand step in proving Theaem 9.5.6.

Theorem 9.5.5 ([579]). Let G= (V,E) be a graph. If r: V W is regular
(strong structural) with respect to E then r is regular (strong structural) for any
relation in S(G).

Proof. By induction on the string lengh of a relation in S(G) written as a
product of generating relations (see de“nitio n 9.5.2), it suces to show that
if r is regular (strong structural) with respect to two relations Q,R  S(G),
thenit isregular (strong structural) for the product QR. So let Q,R  S(G) be
two relations and u,v  V sud that (r(u),r(v)) rw(QR). By Lemma 9.54,
this implies (r(u),r(v))  rwe(Q)rel(R), whencethereisaw W sud that
(r(u),w)  re(Q) and (w,r(v)) rel(R). Sincer is surjective, there exists
Uuo V with r(up) = w, and it is (r(u),r(ug)) rre(Q) and (r(up),r(v))
rreI(R)-

Now, suppose that r is regular with respect to Q and R. We have to show
the existenceof c,d V sud that (c,v) OR, (u,d) QR,r(c)= r(u) and
r(d) = r(v). Sincer is regular with respect to Q and (r(u),r(ug)) rre(Q)
there existsu; V such that r(u;) = r(ug) and (u,u;) Q. Similarly, sincer
is regular with respectto R and (r(ug),r(v)) rri(R), thereexistsd V such
that r(d) = r(v), and (u;,d) R. Since (u,u;) Q and (u;,d) R it follows
(u,d) QR, which is the “rst half of what we have to show. The proof of the
secaod half can be done along the same lines.
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Now, suppose that f is strong structural with respect to Q and R. Then
(r(u),r(uo))  rrei(Q) and (r(uo),r(v)) rrei(R) immediately implies (u, uo)
Q and (ug,v) R, whence(u,v) QR.

The next theoremmight be seenasthe main result of this section. It states
that regular role assighmentsinducehomomorphismson the induced semigoups.

Theorem 9.5.6 ([579]). Let G= (V,E) be a graph with multiple relations. If
r:Vv W is a regular role assignment with role graph R, then ry: S(G)
S(R) is a surjective semigroup homomorphism.

Proof. We know from Lemma 9.5.4 that the idertity r(QR) = rei(Q)rrel(R)
holds wheneer r is regular with respectto Q and R. Theorem 9.5.5 states that
r is regular with respect to all relationsin S(G). Thus the imageof S(G) under
el is equd to S(R) (the imagesof the gererator relations E are the gererator
relations of the semigroup of the role graph S(R)) and r is a semigroup ho-
momor phism.

The condition that r be regular, is not necessaryfor ry being a semrigroup
homomorphism. Kim and Roush [355] gave a more general su cien t conditio n.
Alsocompare [471].

The next thearem shows that the role graph of a strong structural role as-
signment has the same senigroup as the original graph.

Theorem 9.5.7 ([579]). Let G = (V,E) be a graph with multiple relations.
If r:V W is a strong structural role assignment with role graph R, then
rei: S(G  S(R) is a semigroup isomorphism.

Proof. By Theorem 9.5.6 ry¢ is a surjective semigroup homomorphism. It re-
mains to show that r is injective. Solet Q,R  S(G) with r(Q) = rwe(R).
Then, for all u,v  V if holds (u,v) Qi (r(u),r(v)) rwe(Q) (sincer is
strong) i (r(u),r(v)) rw(R)i (u,v) R (sincer is strong).

Do Semigroup-Hom omorphi sms Reduce Networks? The above theorems
give the ideato an alternative approach to “nd role assigimerts: In Theorem
9.5.6 it has beenshown that role assgnments introduce new idertities on the
semigoup of (generator and compound) relations of a network. Conversely, one
could imposeidentities on relations that are almost satis‘ ed, or that are con-
sidered to be reasmable. Now the interesting question is: Does identi“ cation of
relations imply identi* cation of vertices of the graph which gererated the semi-
group? (See[73].)

That is, given a graph G with semgroup S(G) and a surjective semigroup
homomaorphism S(G) S onto sone semigroup S, is there a graph G and a
graph homomorphism G G such that S is the semigroup gererated by G ?

This would be the counterpart of Theorem 9.5.6, which states that role as-
signmerts on graphs induce, under the conditio n of regularity, reductions of the
induced semigoups, (i. e., surjective semigroup homomorphisms).

The answer isin generalno, smply for the reason that not every semigroupis
a semigroup of relations. But under what conditions on S and on the semigroup
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homomorphism would we get a meaningful role graph and a meaningful role
assignment?

Although the question is open for the general case some examplescan be
found in [89] and [471].

9.5.1 Winship-P attison Role Equivalence

The conditio n for regular equivalent verticesis: equivalert vertices havethe same
ties to equivalent counterparts. In this section the phrase to ecuivalent counter-
parts is replaced by the wealker requiremert to some vertices. As mentioned in
Remark 9.5.9 the four equivalencesde“ned in this section, are specid casesof
relativ e regular equivalence(seeSection 9.3.4).

De“nition 9.5.8. Let G=(V,E) beagraphand an equivalence on V. Then
is said to be a weak role equivalencefor G if for all u,v,w V andE E,
u v implies both

...URw implies there exists x such that VvRx,
...WwRu implies there exists x such that xRv.

Note that in contrast to the de“nition of regular equivalence one does not con
sidertherole of x. So weakrole-equivalent verti cesdonet share the samerelations
to eguivalent counterparts, but they only share the same relations. If the graph
has one single relation, the maximal weak role equivalenceis simply the partitio n
into isolates, sinks, sources,and verticeswith positiv e in- and out-degee.

The indier encein regard to the role of adjacent vertices makes weak role
equivalence a much weaker requiremert than e.g., regular or strong structural
equivalences.

Weak role equivalence could have beende“ned using relativ e regular equiv-
alence(seeSection 9.3.4).

Remark 9.5.9. Weak role equivalencesare exactly the equivalenceswhich are
regular relative to the complete partition. This remark immediately generalizes
to the next threede"nitio ns.

Weak role equivalence can be tightened in two directions: to include multi-
plexity, which leads to De" nition 9.5.11, or to include composition of relations,
which leads to De" nition 9.5.10.

De"nition 9.5.10. Let G=(V,E) be a graph, S := S(G) its semigroup, and
an equivalence on V. Then is called a compositio nal equivalenceof Gif it is
a weak role equivalence of (V,S) (see De"nition 9.5.8).

Note that in contrast to regular equivalences,where an equivalence is regular
with respect to E if and only if it is regular with respect to S(E), it makes a
di er ence whether we require  to be a weak role equivalenceof G or of (V,S).
Compositio nal equivalencesare weak role equivalences.
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De"nition 9.5.11 ([579]). Let G=(V,E) beagraph,C =(V,M ) := MPX (G
its multiplex graph (see De"nition 9.4.6) and  an equivalence on V. T hen,

is called a bundle equivalenceof G if it is a weak role eguivalence (see De"ni-
tion 9.5.8) of C.

Bundle equivalencesare wedak role equivalences.

Winship-Pattiso n role equivalenceis most often de“ned in terms of the role-
set of an actor (see[471, p. 79 ]): Two actors are equivalent if they have the
same role-sets (also compare [82, p. 81]). We restate the de" nitions given there
in our terminology.

De"nition 9.5.12. Let G=(V,E) be a graph. An equivalence relaton on V
is called a local role equivalenceor Winship-Pattison role equivalenceif is a
bundle equivalence (see De“nition 9.5.11) of the graph (V,S(G)).

Local role equivalencesare both bundle and compositio nal equivalences.Local
role equivalencesare, in general, not regular, which immediately impliesthe same
for the three other (weaker) equivalencesde“ned in this section: Let vertices u
and v be connectedby a bidirected edgeand v have an out-going edgeto a third
vertex w. Then u and v are locally role equivalent but not regularly equivalent.

Conclusion. The semigroup of a graph is a possibility to descibe the interaction
of multiple and compound relations. An idea to useidenti“cation of relations
in order to get role assgnments has been sketched. T his approach seemsto be
rather hard, both theoretically and computationally.

9.6 Chapter Notes

Vertex partitions that yield role assgnments have “ rst beenintroduced by Lor-
rain and White [394], who de“ned structural equivalence.

Sailer [50] pointed out that structural equivalenceis to restrictiv e to meet
the intuitive notion of social role. He proposedthat actors play the same role if
they are connectedto role-equivalent actors (in contrast to identical actors, as
structural equivalencedemands). His idea of str uctural relatednesshas beenfor-
malized as regular equivalenceby White and Reitz in the semind paper [579]. In
this work, they gave a uni“ed treatment of structural, regular, and other equiva-
lencesfor graphs with single or multiple relations. Furthermore, they developed
conditio ns for graph homomorphisms to induce (structural or regular) vertex
partitio ns and to be compatible with the composition of relations.

Borgatti and Everett [82, 83, 190, 19]] established many properties of the set
of regular equivalences,including lattice structure, and developed the algorithm
CATRE GE to compute the maximal regular equivalence of a graph. Further-
more they intr oduced other typesof vertex partitions to de“ne rolesin graphs.
Boyd and Everett [90] further clari“ed the lattice structure and de“ned relative
regular equivalence.

Marx and Masuwh [408 commented that regular equivalence is already
known, under the name of bisimulation in computer science.Their report has
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beenthereasonthat we found the algorithm of Paige and Tarjan [459, which can
compute the maximal regular equivalenceand is much faster than CATRE GE.

Roberts and Sheng[493] “rst showed that there are NP -complete problems
stemming from regular role assgnments. A more complete treatment is from
Fiala and Paulusma [209].

Role assgnments for graphs with multiple and composite relations are al-
ready treatedin [394, 579]. The possibilities to de“ne role assigimentsin graphs
with multiple relations are abundant. We could sketch only few of themin this
chapter. Additional reading is, e.g., Kim and Roush [355 and Pattison [47]]
who found many conditio ns for vertex partitio nsto be compatible with the com-
position of relations. In the latter book, the algebraic structure of semigroups
of relations is preserted in detail. Boyd [89] advocated the use of red matrix
multiplica tion to de“ne semigoups stemming from graphs. These semigoups
often admit sophisticated decampositio ns, which in tur n, induce decanpositio ns
or reductions of the graphs that generated thesesemigoups.

In order to be able to ded with theirregularities of empirical networks, a for-
malization of role assigyment must ..in additio n to choosingthe right compatibil-
ity criterion .. provide some kind of relaxation. (See Wassernan and Faust [569
for a more detailed explanation.) Relaxation has not beentredaed in this chap-
ter, which has beenfocusedon the sideals caseof vertex partitions that satisfy
strictly the dier ent compatibilit y constraints. Possibilities to relax structural
equivalence, optimizational approades for regular equivalence, and stochastic
methods for role assgnments are preserned in Chapter 10 about blockmodels.
Brandesand Lerner [97] intr oduced a relaxation of equitable partitions to pro-
vide a framework for role assgnments that are tolerant towards irregularities.
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