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Classi“cat ion is the key to understand large and complex systemsthat are made
up of many individua l parts. For example in the study of food webs (networks
that consist of living organismsand predator-prey relationships, ”ow of protein,
etc.) it is, even for moderately small ecosystems,impossible to understand the
relationship between each pair of indivi dual organisms. Nevertheless,we can
understand the system …to a certain extent …by classifying individuals and
describing relationshipson the class level. Classi“cat ion in networks aims to de-
scribe regular patterns of interaction and to highlight essent ial st ructure, which
remains stable over long periods of time.

In this chapter we formalize the classi“cat ion of vertices in a graph, such
that vert ices in the same class can be considered to occupy the same position,
or play the same role in the network. This idea of network posit ion or role,
seee. g., Nadel [436], has been formalized “r st by Lorrain and White [394] by
a special type of vertex partition. They proposed that vert icesplay the same
role if they have identical neighborhoods. Subsequent work like Sailer [501] and
White and Reitz [579] generalized this early de“nitio n, weakening it su�cien t ly
to make it more appropriate for modeling social roles.All thesede“nit ions have
in common that vertices which are claimed to play the same role must have
something in common w. r. t . the relations they have with other vert ices, i. e., a
generic problem de“nitio n for this chapter can be given by

given a graph G = ( V,E),
“ nd a part it ion of V that is compatible with E .

The genericpart hereis the term •compatible with E•. In this chapter, wepresent
de“nitio ns for such compat ibilit y requirements, and propert ies of the resulting
classesof vertex-part itio ns.

Outline of this chapter. The remainder of this section treats preliminary nota-
t ion. In Sections 9.1 through 9.3, di� erent types of role assignments are int ro-
duced and investigated. In Section 9.4 de“ nit ions are adapted to graphs with
multiple relations (seeDe“nitio n 9.4.1) and in Section 9.5 compositio n of rela-
t ions is int roduced and its relat ionship to role assignments is investigated.

Sections 9.1 through 9.3 follow loosely a common patter n: After de“ning
a compatibilit y requirement , some elementary propert ies of the so-de“ned set
of role assignment are ment ioned. Then, we investigate a part ial ordering on
this set, present an algorithm for computing speci“c elements, and treat the
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complexity of some decision problems. We provide a short conclusion for each
type of vertex part itio n, where we dwell on the applicabilit y for de“ning role
assignments in empirical networks.

The most complete investigation is for regular equivalences in Section 9.2.
Although there is some scept icism asto whether regular equivalencesare a good
formalization of role assignments in real social networks, we have chosento t reat
them prominently in this chapter, since their investigation is exemplary for the
investigation of types of role assignments. The results for regular equivalences
are often translatable to other types of equivalences,often becoming easieror
even tr ivial. We emphasizethis generalit y when appropriate.

Graphmodel of this chapter. In this chapter, graph usually meansdirectedgraph,
possibly with loops. Except for Sections 9.2.4 and 9.2.5, where graph means
undirected graph, Section 9.3.1, where results are for undirected multig raphs,
and Sections 9.4 and 9.5, where we consider graphs with mult iple relat ions (see
De“ nit ion 9.4.1).

9.0.1 Prelimin ar ies

In the following, we will often switch between vertex part itio ns, equivalence
relat ions on the vert ex set, or role assignments, since,depending on the context ,
some point of view will be more intuitiv e than the other. Here we establish that
theseare just thr ee di�er ent formulations for the same underlying concept.

Let V be a set . An equivalence relation � is a binary relat ion on V that
is re” exive, symmetric, and transiti ve, i. e., v � v, u � v implies v � u, and
u � v $ v � w implies u � w, for all u, v, w � V . If v � V then [v] := { u ; u � v}
is its equivalence class.

A partit ion P = { C1, . . . , Ck } of V is a set of non-empty, disjoint subsets
Ci � V , called classesor blocks, such that V =

	 k
i =1 Ci . That is, each vertex

v � V is in exactly one class.
If � is an equivalence relat ion on V , then the set of its equivalence classes

is a part it ion of V . Conversely, a part it ion P inducesan equivalencerelat ion by
de“ning that two vertices are equivalent i� they belong to the same class in P.
Thesetwo mappings are mutually inverse.

D e“nition 9.0.1. A role assignment for V is a surjective mapping r : V � W
onto some set W of roles.

The requirement surjecti ve is no big lossof generalit y sincewecan alwaysrestrict
a mapping to its imageset. One could also think of role assignments as vertex-
colorings, but note that we do not require that adjacent vertices must have
di�er ent colors. We usethe terms role and positio n synonymously.

A role assignment de“nes a part itio n of V by taking the inverse-images
r Š 1(w) := { v � V ; r (v) = w} , w � W as classes.Conversely an equivalence
relat ion inducesa role assignment for V by the class mapping v &� [v]. These
two mappings are mutually inverse, up to isomorphism of the set of roles.

We summarize this in the following remark.
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Remark 9.0.2. For each part it ion there is a unique associated equivalencerela-
t ion and a unique associated role assignment and the same holds for all other
combinat ions.

For the remainder of this chapter, de“nitio ns for vertex part itio ns tr anslate
to associated equivalence relations and role assignments.

9.0.2 R ole Graph

The image set of a role assignment can be supplied naturally with a graph
structure. We de“ne that rolesare adjacent if thereare adjacent verticesplaying
theseroles:

D e“nition 9.0.3. Let G = ( V,E) be a graph and r : V � W a role assignment.
The role graph R = ( W, F ) is the graph with vertex set W (the set of roles) and
edge set F � W × W de“ned by

F := { (r (u), r (v)) ; � u, v � V such that (u, v) � E } .

R is also called quotient of G over r .

The role graph R models roles and their relations. It can also be seenas a
smaller model for the original graph G. Thus, a role assignment can be seenas
some form of network compression. Necessarily, some informat ion will get lost
by such a compression. The goal of role analysis is to “ nd role assignments such
that the resulting role graph displays essent ial str uctural network properties,
i. e., that not too much informat ion will get lost.

Thus we have two di�er ent mot ivat ions for “nding good role assignments.
Fir st to know which individua ls (vertices) are•similar•. Second to reducenetwork
complexity: If a network is very largeor irregular, we can•t capture its st ructure
on the individual (vert ex) level but perhaps on an aggregated (role) level. The
hope is that the role graph highlights essent ial and more persistent network
structure. While individuals come and go, and behave rather irregularly, roles
are expectedto remain stable (at leastfor a longer period of time) and to display
a more regular pat tern of interaction.

9.1 Stru ctu ra l Equivalence

As ment ioned in the int roduct ion, the goal of role analysis is to “ nd meaningful
vertex part itio ns, where •meaningful• is up to some notion of compat ibilit y with
the edgesof the graph. In this section the most simple, but alsomost restrict ive
requirement of compatibilit y is de“ned and investigated. Lorrain and White
[394] proposed that individuals are role equivalent if they are related to the
same individua ls.

D e“nition 9.1.1. Let G = ( V,E) be a graph, and r : V � W a role assignment.
Then, r is called strong structural if equivalent vertices havethe same(out- and
in-)neighborhoods, i. e., if for all u, v � V

r (u) = r (v) = N + (u) = N + (v) and N Š (u) = N Š (v) .
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Remember Remark 9.0.2: De“ nit ions for roleassignments t ranslate to associated
part itio ns and equivalencerelations.

Remark 9.1.2. By De“ nit ion 9.0.3 it holds for any role assignment r that , if
(u, v) is an edge in the graph, then (r (u), r (v)) is an edge in the role graph. If
r is strong structural, then the converseis also tr ue. This is even an equivalent
condit ion for a role assignment to be strong structural [579]. That is, a role
assignment r is strong structural if and only if for all u, v � V , it holds that
(r (u), r (v)) is an edge in the role graph if and only if (u, v) is an edge in the
graph.

We present some examples for strong structural equivalences.The identit y
mapping id : V � V ; v &� v is strong structural for each graph G = ( V,E)
independent of E . Some slight ly lesstr ivial examples are shown in Figure 9.1.
For the star, the role assignment that maps the central vert ex onto one role
and all other vertices onto another, is strong structural. The bipart itio n of a
complete bipart ite graph is strong structural. The complete graph without loops
has no str ong str uctural role assignment besides id, since the neighborhood of
each vertex v is the only one which does not contain v.

F ig. 9.1. Star (left), complete biparti te graph (mi ddle) and complete graph (ri ght )

We note someelementary properties. A classof str ong str ucturally equivalent
vert icesis either an independent set (inducesa subgraph without edges) for the
graph or a clique with all loops. In particular, if two adjacent vertices u, v are
strong structurally equivalent , then both (u, v) and (v, u) are edgesof the graph,
and both u and v have a loop.

The undirecteddistanceof two str ucturally equivalent (non-isolated) vert ices
is at most 2. For if u and v are str ucturally equivalent and u has a neighbor w
then w is also a neighbor of v. Thus, structural equivalence can only identify
vertices that are near each other.

Although in most irregular graph there won•t be any non-t rivial structural
equivalence, the set of structural equivalencesmight be huge. For the complete
graph with loops, every equivalenceis str uctural. In Section 9.1.2, we investigate
a part ial order on this set.

Variations of structural equivalence. The requirement that strong structurally
equivalent adjacent vertices must have loops has beenrelaxed by some authors.
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D e“nition 9.1.3 ( [191]). An equivalence � on the vertex set of a graph is
called structural if for all vertices u � v the transpositi on of u and v is an
automorphism of the graph.

White and Reitz [579] gave a slight ly di�er ent de“nitio n, which coincides
with De“nitio n 9.1.3 on looplessgraphs.

9.1.1 Lattic e of Equiv alenc e R elat ions

The set of equivalencerelations on a set V is huge. Here we show that this set
naturally admits a part ial order, which turns out to be a lat t ice. (For more on
lattice theory, seee.g., [261].) This section is preliminary for Sections 9.1.2 and
9.2.2.

Equivalence relat ions on a set V are subsets of V × V , thus they can be
part ially ordered by set-inclusion (� 1�� 2 i� � 1�� 2). The equivalencerelation
� 1 is then called “ne r than � 2 and � 2 is called coarser than � 1. This part ial
order for equivalences translates to associated part it ions and role assignments
(seeremark 9.0.2).

In partially ordered sets, two elements are not necessarilycomparable. In
some caseswe can at least guaranteethe existence of lower and upper bounds.

D e“nition 9.1.4. Let X be a set that is part ial ly ordered by � and Y � X .
y
 � X is called an upper bound (a lower bound) for Y if for all y � Y ,

y � y
 (y
 � y).
y
 � X is called the supremum ( in“m um) of Y , i f it is an upper bound

(lower bound) and for each y� � X that is an upper bound (lower bound) for
Y , i t follows y
 � y� (y� � y
 ). The second condition ensures that suprema and
in“ ma (if they exist) are unique.

The supremum of Y is denoted by sup(Y ) the in“mum by inf (Y ). We also
writ e sup(x, y) or inf (x, y) instead of sup({ x, y} ) or inf ({ x, y} ), respectively.

A lattice is a partially ordered set L , such that for all a, b � L , sup(a, b) and
inf (a, b) exist. sup(a, b) is also called the join of a and b and denoted by a � b.
inf (a, b) is also called the meet of a and b and denoted by a $ b.

If � 1 and � 2 are two equivalencerelat ions on V , then their intersection (as
sets) is the in“m um of � 1 and � 2. The supremum is slight ly more complicated.
It must contain all pairs of verti cesthat are equivalent in either � 1 or � 2, but
also vert icesthat are related by a chain of such pairs: The transiti ve closure of
a relat ion R � V × V is de“ned to be the relation S � V × V , where for all
u, v � V

uSv � � k �
�

, � w1, . . . , wk � V such that

u = w1, v = wk , and � i = 1 , . . . , k Š 1 it i s wi Rwi +1 .

The transitiveclosureof a symmetric relation is symmetric, the tr ansitiveclosure
of a re”exive relat ion is re”exive and the transitive closure of any relat ion is
tr ansitiv e.
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It follows that , if � 1 and � 2 are two equivalence relat ions on V , then the
tr ansitive closure of their union is the supremum of � 1 and � 2.

We summarize this in the following theorem.

T heorem 9.1.5. The set of equivalence relations is a lattice.

The interpretation in our context is the following: Given two equivalence
relations ident ifying vert ices that play the same role, there exists a uniquely
de“ned smallest equivalence ident ifying all vertices which play the same role in
either one of the two original equivalences. Moreover, there exists a uniquely
de“ned greatest equivalencedistinguishing betweenactors which play a di�er ent
role in either one of the two original equivalences.

9.1.2 Latti ce of Structural Equi valences

It can easily be veri“ed that if � 1 and � 2 are two strong structural equivalences
for a graph, then so are their intersection and the transitive closure of their
union.

Proposit ion 9.1.6. The set of strong structural equivalences of a graph is a
sublattice of the lattice of all equivalence relations.

In part icular there exist always a maximum structural equivalence(MSE) for a
graph.

The property of being strong structural is preserved under re“nement :

Proposit ion 9.1.7. If � 1�� 2 and � 2 is a strong str uctural equivalence, then
so is � 1.

Although the above proposit ion is very simple to prove, it is very useful, since
it implies that the set of all structural equivalencesof a graph is completely
described by the MSE. In the next section we present a linear t ime algorithm
for computing the MSE of a graph.

9.1.3 Computa t ion of Str uctur al Equiv alences

Computing the maximal str ong str uctural equivalencefor a graph G = ( V,E)
is rather straight-forward. Each vertex v � V part itio ns V into 4 classes(some
of which may be empty): Vertices which are in N + (v), in N Š (v), in both, or in
none.

The basic idea of the following algorithm 21 is to compute the intersection
of all these part it ions by looking at each edge at most twice. This algorithm
is an adapt ion of the algorithm of Paige and Tarj an [459, Paragraph 3] (see
Section 9.2.3) for the computat ion of the regular interior, to the much simpler
problem of computing the MSE.

The correctnessof algorithm 21 follows from the fact that it dividesexactly
the pairs of vert iceswith non-identical neighborhoods.

An e�cien t implementation requiressome datastructures,which will be pre-
sented in detail since this is a good exercise for understanding the much more
complicated algorithm in Section 9.2.3.
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A lgori t hm 21: Computation of the maximal st rong st ructural equivalence
(MSE) of a graph

Input : a graph G = ( V,E )

begin
maintain a parti ti on P = { C1 , . . . , Ck } of V , which init ially is the complete
part it ion P = { V }
// at the end, P will be the MSE of G
for each v � V do

for each class C to which a vertex u � N + (v) belongs to do
create a new class C � of P
move all vertices in N + (v) � C from C to C �

if C has become empty the n
remove C from P

for each class C to which a vertex u � N Š (v) belongs to do
create a new class C � of P
move all vertices in N Š (v) � C from C to C �

if C has become empty the n
remove C from P

end

…A graph G = ( V,E) must permit accessto the (out -/in-)incidence list of a
vertex v in time proportional to the size of this list.

…Scanning all elements of a list must be possible in linear t ime.
…An edgemust permit accessto its source and its target in constant time.
…A part it ion must allow insertion and deletion of classesin constant t ime.
…A classmust allow insertion and deletion of vertices in constant time.
…A vertex must permit accessto its classin constant t ime.

The requirements on part it ions and classesare achieved if a part it ion is repre-
sented by a doubly linked list of its classesand a classby a doubly linked list of
its vertices.

One re“nement step (the outer loop) for a given vertex v is performed as
follows.

1. Scan the outgoing edgesof v. For each such edge (v, u), determine the class
C of u and create an associated block C � if one does not already exist. Move
u from C to C � .

2. Dur ing the scanning, create a list of thoseclassesC that are split . After the
scanning processthe list of split classes.For each such class C mark C � as
no longer being associated with C and eliminate C if C is now empty.

3. Scan the incoming edgesof v and perform the same steps as above.

A loop for a given v runs in t ime proport ional to the degreeof v, if v is
non-isolated and in constant t ime else. An overall running time of O(|V | + |E |)
follows, which is also an asymptot ic bound for the space requirement .



9 Role Assignments 223

Conclusion. Structural equivalence is theoretically and computat ionally very
simple. It is much too strict to be applied to irregular networks and only vert ices
that have distance at most 2, can be ident i“ed by a structural equivalence.
Nevertheless,structural equivalence is the starting point for many relaxations
(seeChapter 10).

9.2 Regular Equiv alence

Regular equivalence goes back to the idea of structural relatedness of Sailer
[501], who proposed that actors play the same role if they are connected to
role-equivalent actors …in contrast to structural equivalence, where they have
to be connectedto identical actors. Regular equivalencehas “ rst been de“ned
precisely by White and Reitz in [579]. Borgatti and Everett (e.g., [191]) gave
an equivalent de“ nit ion in terms of colorings (here called role assignments). A
coloring is regular if vertices that are colored the same, have the same colors
in their neighborhoods. If r : V � W is a role assignment and U � V then
r (U) := { r (u) ; u � U} is called the role set of U.

D e“nition 9.2.1. A role assignment r : V � W is called regular if for all u, v �
V

r (u) = r (v) = r (N + (u)) = r (N + (v)) and r (N Š (u)) = r (N Š (v)) .

The righthand side equations are equations of sets. There are many more equiv-
alent de“nit ions, (seee.g., [579, 90]).

Regular roleassignmentsare often considered as the classof roleassignments.
The term regular is often omitted in liter ature.

Regular equivalence and bisimulation. Marx and Masuch [408] pointed out the
closerelationship betweenregular equivalence,bisimulation, and dynamic logic.
A fruit ful approach to “ nd good algorithms for regular equivalence is to have a
look at the bisimulat ion liter ature.

9.2.1 Elemen t ar y Proper t ies

In this section we note some propert ies of regular equivalencerelat ions.
The identi ty mapping id : V � V ; v &� v is regular for all graphs. More

generally, every structural role assignment is regular.
The next proposit ion characterizes when the complete part it ion, which is

induced by the constant role assignment J : V � 1 is regular. A sink is a vertex
with zero outdegree,a source is one with zero indegree.

Proposit ion 9.2.2 ( [82]) . The complete partition of a graph G = ( V,E) is
regular if and only if G contains neither sinks nor sources or E = � .
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Proof. If : If E = � then the righthand side in de“nitio n 9.2.1 is simply � = � ,
thus each role assignment is regular. If G has neither sinks nor sources,then, for
all v � V , J (N + (v)) = J (N Š (v)) = { 1} and the equat ions in De“nit ion 9.2.1
are satis“ ed for all u, v � V .

Only if : Suppose E �= � and let v � V be a sink. Since E �= � there exists
u � V with non-zero outdegree.But then

J (N + (v)) = � �= { 1} = J (N + (u)) ,

but J (u) = 1 = J (v), thus J is not regular. The caseof G containing a source is
t reated analogously. ��

The ident ity and the complete part it ion are called tr ivial role assignments.
The next lemma is formulated in [190] for undirected connected graphs, but it
has a generalization to st rongly connected(directed) graphs.

Lemma 9.2.3. Let G be a strongly connected graph. Then in any non-tr ivial
role assignment r of G, neither { r (v)} = r (N + (v)) nor { r (v)} = r (N Š (v))
holds for any vertex v.

Proof. If for some vertex v it is { r (v)} = r (N + (v)), then the same would
need to be tr ue for each vertex in N + (v). Henceeach vertex in successive out-
neighborhoodswould be assignedthesameroleand sinceG is strongly connected
it follows that r (V ) = { r (v)} contradicting the fact that the role assignment is
non-tr ivial. The case of { r (v)} = r (N Š (v)) for some vertex v is handled equally.

��

A graph with at least 3 vert iceswhoseonly regular roleassignmentsare t rivial
is called role primit ive. The existenceof directed role primitiv e graphs is tr ivial:
For every directed path only the ident ity part it ion is regular. Directed graphs
which have exactly the ident ity and the complete part it ion as regular part it ions
are for example directed cyclesof prime length, since every non-tr ivial regular
equivalenceinducesa non-t rivial divisor of the cycle length.

The existence of undirected role primitiv e graphs is non-tr ivial.

T heorem 9.2.4 ( [190]) . The graph in Figure 9.2 is role primitive.

F ig. 9.2. A role-pri mit ive undirected graph

The proof goes by checking that all possible role assignments are either non
regular or t rivial, where one can make useof the fact that the pending paths of
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the graph in Figure 9.2 largely diminish the possibilities one has to follow. The
proof is omitted here.

A graph in which any role assignment is regular is called arbitrarily role-
assignable. The next lemma is formulated in [190] for undirected connected
graphs.

Lemma 9.2.5. A strongly connected graph G = ( V,E) is arbitrarily role-
assignable if and only if it is a complete graph, possibly wit h some but not nec-
essarily all loops.

Proof. Let G = ( V,E) be a graph satisfying the condit ion of the lemma and let
r be any role assignment . We have to show that for all verticesu, v � V

r (u) = r (v) = r (N + (u)) = r (N + (v)) and r (N Š (u)) = r (N Š (v)) .

If u = v this is tr ivial. Otherwise u and v are connected by a bidirected edge,
i. e., the role sets of their in- and out- neighborhoods contain r (u). These role
sets alsocontain all other rolessince u and v are connectedto all other vertices.
So the role sets of the in- and out- neighborhoods of both verticescontain all
roles, whencethey are equal.

Conversely, let G = ( V,E) be a graph with two vert icesu and v, such that
u �= v and (u, v) �� E . We assign V \ { v} one role and v a di� erent one. This
is a non-t rivial role assignment (note that n > 2, since G is connected) with
r (u) = r (N + (u)) . So by Lemma 9.2.3 this role assignment can•t be regular. ��

9.2.2 Latti ce Structure and R egul ar I nt eri or

We have seenthat the set of regular equivalences of a graph might be huge.
In this section we prove that it is a lattice. Seethe de“nitio n of a lattice in
Section 9.1.1.

T heorem 9.2.6 ( [82]) . The set of all regular equivalences of a graph G forms
a latti ce, where the supremum is a restriction of the supremum in the latti ce of
all equivalences.1

Proof. By Lemma 9.2.7, which will be shown after the proof of this theorem,
it su�ces to show the existence of suprema of arbit rary subsets. The ident ity
part itio n is the minimal element in the set of regular equivalences,thus it is the
supremum for the empty set. Hencewe needonly to considerthe supremum for
non-empty collectionsof regular roleassignments.Sincethesetof all equivalences
of a graph is “nite, it even su�ces to show the existenceof the supremum of two
regular equivalences.

So let � 1 and � 2 be two regular equivalenceson G. De“ne % to be the
transit ive closure of the union of � 1 and � 2.

As ment ioned in Section 9.1.1, % is the supremum of � 1 and � 2 in the lattice
of all equivalences,so it is an equivalence relat ion and it is a supremum of � 1

1 For the in“m um see propositi on (9.2.9).
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and � 2 with respect to the partia l order (which is the same in the lattice of all
equivalencesand in the lattice of regular equivalences).Therefore it remains to
show that % is regular.

For this suppose that u % v and let x � N + (u) for u, v, x � V . Since u % v
there exists a sequenceu, w2, . . . , wkŠ 1, v � V where u � j 1 w2, j 1 � { 1, 2} . Since
� j 1 is regular and x � N + (u), there exists an x2 � V such that x2 � N + (w2)
and x2 � j 1 x. Iterating this will “na lly produce an xk such that xk � N + (v)
and x % xk , which shows the conditio n for the out-neighborhood. The case
x � N Š (u) is handled analogously. ��

For the proof of Theorem 9.2.6 we needthe following lemma (seee.g., [261]).

Lemma 9.2.7. Let (X, � ) be a partially ordered set. I f supH exists for any
subsetH � X , then (X, � ) is a latti ce.

Proof. All we have to show is that for x, y � X there exists inf (x, y). Let H :=
{ z � X ; z � x and z � y} . Then one can easily verify that supH is the in“m um
of { x, y} . ��

Cor olla r y 9.2.8. If G is a graph then there exists a maximum regular equiva-
lence and there exists a minimum regular equivalence for G.

Proof. The maximum is simply the supremum over all regular equivalences.Du-
ally, the minimum is the in“m um over all regular equivalences.Or easier: The
minimum is the identit y part itio n which is always regular and minimal. ��

Altho ugh the supremum in the lattice of regular equivalencesis a restr iction
of the supremum in the lattice of all equivalences,the in“m um is not.

Proposit ion 9.2.9 ( [82]) . The lattice of regular equivalences is not a sublattice
of the lattice of all equivalences.

Proof. We show that the in“m um is not a restriction of the in“m um in the
lattice of all equivalences(which is simply intersection). Consider the graph in
Figure 9.3 and the two regular part it ions P1 := { { A, C, E} , { B, D} } and P2 :=
{ { A, C} , { B, D , E} } . The intersection of P1 and P2 is P = { { A, C} , { B, D} ,
{ E } } , which is not regular. ��

A

B

C

D

E

F ig. 9.3. Meet is not intersection
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The fact that the supremum in the lattice of regular equivalencesis a restric-
t ion of the supremum in the latt ice of all equivalencesimplies the existence of a
maximum regular equivalencewhich lies below a given (arbitrary) equivalence.

D e“nition 9.2.10. Let G be a graph and � an equivalence relation on its vertex
set. An equivalence relation � 1 is called the regular interior of � if it satis“ es
the following three condit ions.

1. � 1 is regular,
2. � 1�� , and
3. for all � 2 satisfying the above two condit ions it holds � 2�� 1.

Cor olla r y 9.2.11. Let G be a graph and � an equivalence relation on its vertex
set. Then the regular interior of � exists.

On the other hand there is no minimum regular equivalence above a given
equivalence in general (which would havebeen called a regular closure or regular
hull).

Proof. For the “r st part , let G = ( V,E) be a graph and � be an (arbit rary)
equivalence on the node set. Then the supremum over the set of all regular
equivalencerelat ions that are “ner than � is the regular interior of � .

For thesecond part recall the example in the proof of Prop. 9.2.9 shown in Fig-
ure9.3). It is easy to verify that the regular part itio nsP1 := { { A, C, E} , { B, D} }
and P2 := { { A, C} , { B, D , E} } are both above the (non-regular) part it ion
P := { { A, C} , { B, D} , { E } } and are both minimal with this propert y. ��

The regular interior is described in more detail in [90]; its computation is t reated
in Section 9.2.3. The in“m um (in the lattice of regular equivalencerelations) of
two regular equivalence relat ions � 1 and � 2 is given by the regular interior of
the intersectionof � 1 and � 2.

9.2.3 Computa t ion of R egula r I nter ior

The regular interior (see De“ nit ion 9.2.10) of an equivalence relation � is the
coarsestregular re“nement of � . It can be computed, starting with � , by a
number of re“nement steps in each of which current ly equivalent vertices with
non-equivalent neighborhoods are split, unt il all equivalent vertices have equiv-
alent neighborhoods. For an example of such a computation seeFigure 9.4. The
running time of this computat ion dependsheavily on how thesere“nement steps
are organized.

In this section we present two algorithms for the computation of the reg-
ular interior. CATREGE [83] is the most well-known algorithm in the social
network liter ature. It runs in time O(n3). Tarj an and Paige [459] presented a
sophisticated algorithm for the relational coarsest partit ion problem, which is
essent ially equivalent to computing the regular interior. Their algorithm runs in
O(m logn) t ime and is well-known in the bisimulation liter ature. See[408] for
the relationship betweenbisimulation and regular equivalence.
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F ig. 9.4. Computation of the regular interior: init ial part it ion (left), “ rst step (middle)
second and “na l step (right)

CA T R EGE. In [83], Borgatt i and Everett proposed CATREGE as an algo-
rithm for computing the maximal regular equivalenceof a graph, or more gen-
erally for computing the regular interior of an equivalencerelation. CATREGE
runs in O(n3). On a high-level view CATREGE proceedsas follows:

…CATRE GE maintains in each re“nement step a current part itio n P, which is
initia lly set to the complete part itio n (or alternat ively to an arbitr ary input
part itio n).

…In each re“nement step it tests, for each pair of equivalent vertices (w. r. t .
P), whether their neighborhoods are equivalent (w. r. t . P). If so, then these
vertices remain equivalent , otherwise they will be non-equivalent after this
re“nement step.

…The algorithm terminates if no changeshappen.

The number of re“nement steps is bounded by n, since in each re“nement step
(except the last) the number of equivalence classesgrows by at least one. The
running time of one re“nement step is in O(n2).

T he R elat iona l Coarsest Par tition Problem. This section is taken from
[459], although we translate the notat ion into the context of graphs.

Problemde“nition. The RELATIONAL COARSEST PARTITION PROBLEM
(RCPP) has as input a (directed) graph G = ( V,E) and a partitio n P of the
vertex set V .

For a subsetS � V we write E(S) := { v � V ; � u � S such that uE y} and
E Š 1(S) := { u � V ; � v � S such that uE y} . For two subsetsB � V and S � V ,
B is called stable with respect to S if either B � E Š 1(S), or B � E Š 1(S) = � . If
P is a part it ion of V , P is called stable with respect to S if all of its blocks are
stable wit h respect to S. P is called stable if it is stable with respect to each of
its own blocks.

The RCPP is the problem of “nding the coarseststable re“nement for the
initia l partitio n P.

In the languageof role assignments this condit ion means that for each two
roles, say r1 and r2, either no vertex, or all vertices assignedr1 has/have an
out-going edge to a vertex assigned r2. This is the •out-part • in De“ nit ion 9.2.1.
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The algorithm of Paige and Tarj an [459] runs in t ime O(m logn) and space
O(m + n). Especially for sparse graphs this is a signi“ca nt improvement over
CATRE GE.

Paige and Tarj an already pointed out that it is possible to generalize their
algorithm to handle a bounded number of relat ions. This generalizat ion can
be realized in such a way that it yields asymptot ically the same running time
(seee.g., [207]). Having done this one can apply the algorithm to compute the
coarseststablere“nement wit h respect to E and E T to obtain the regular interior
(seeDe“ nit ion 9.2.10).

The Split function. The algorithm usesa primitiv e re“nement operat ion. For
each part itio n Q of V and subset S � V , let Split (S,Q) be the re“nement
of Q obtained by replacing each block B of Q such that B � E Š 1(S) �= � and
B \ E Š 1(S) �= � by the two blocks B � := B � E Š 1(S) and B �� := B \ E Š 1(S). We
call S a splitter of Q if Split (S,Q) �= Q. Note that Q is unstable with respect
to S if and only if S is a splitter of Q.

We note the following properties of Split and consequencesof stabilit y. Let
S and Q be two subsets of V , and let P and R be two partitio ns of V . The
following elementary propertiesare stated without proof.

Property 9.2.12. 1. Stabilit y is inherited under re“nement ; that is, if R is a
re“nement of P and P is stable with respect to a set S, then so is R.

2. Stabilit y is inherited under union; that is, a partitio n that is stable with
respect to two sets is also stable with respect to their union.

3. Funct ion Split is monotone in its second argument ; that is, if P is a re“ne-
ment of R then Split (S,P) is a re“nement of Split (S,R).

4. Funct ion Split is commutati ve in the sensethat the coarsestre“ nement of
P stable with respect to both S and Q is

Split (S,Split (Q, P)) = Split (Q, Split (S,P)) .

Basic algorit hm. We begin by describing a naive algorithm for the problem. The
algorithm maintains a part itio n Q that is initia lly P and is re“ned unt il it is
the coarseststable re“ nement . The algorithm consists of repeating the following
step unt il Q is stable:

Refin e: Find a set S that is a union of some of the blocks of Q and is
a splitter of Q; replaceQ by Split (S,Q).

Some observations. Since stabilit y is inherited under re“nement , a given set S
can be usedas a splitter in the algorithm only once. Sincestabilit y is inherited
under the union of splitter s, after sets are used as splitter s their unions cannot
be used as splitter s. In particular, a stable partitio n is stable with respect to the
union of any subset of its blocks.

Lemma 9.2.13. The algorit hm maintains the invariant that any stable re“ne-
ment of P is also a re“nement of the current parti tion Q.
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Proof. By induction on the number of re“nement steps.The lemma is tr ue ini-
tia lly by de“nitio n. Suppose it is t rue before a re“nement step that re“nes par-
titio n Q using a splitter S. Let R be any stable re“nement of P. Since S is a
union of blocks of Q and R is a re“nement of Q by the induction hypothesis, S
is a union of blocks of R. HenceR is stable with respect to S. Since Split is
monotone, R = Split (S,R) is a re“nement of Split (S,Q). ��

The following theorem givesanother proof for theexistenceof the regular interior
(seeCorollary 9.2.11).

T heorem 9.2.14. The re“nement algorithm is correct and terminates after at
most n Š 1 steps, having computed the unique coarsest stable re“ nement.

Proof. The assertion on the number of steps follows from the fact that the num-
ber of blocks is between 1 and n. Once no more re“nement steps are possible,
Q is stable, and by Lemma 9.2.13 any stable re“nement is a re“nement of Q. It
follows that Q is the unique coarseststable re“nement . ��

The above algorithm is more general than is necessary to solve the problem:
There is no need to use unions of blocks as splitter s. Restr icting splitter s to
blocks of Q will alsosu�ce. However, the freedom to split using unions of blocks
is one of the crucial ideas neededin developing a fast version of the algorithm.

Preprocessing. In an e�cien t implementat ion of the algorithm it it useful to
reduce the problem instance to one in which |E({ v} )| � 1 for all v � V (that is
only to vert iceshaving out-going edges). To do this we preprocessthe part itio n
P by splitting each block B into B � := B � E Š 1(V ) and B �� := B \ E Š 1(V ). The
blocks B �� will never be split by the re“nement algorithm; thus we can run the
re“ nement algorithm on the part it ion P � consisting of the set of blocks B � . P �

is a part it ion of the set V � := E Š 1(V ), of size at most m. The coarseststable
re“nement of P � together with the blocks B �� is the coarseststable re“ nement of
P. The preprocessingand postpr ocessingtake O(m+ n) t ime if we haveavailable
the preimage set E Š 1(v) of each element v � V . Henceforth, we shall assume
|E({ v} )| � 1 for all v � V . This implies m � n.

Running time of the basic algorithm. We can implement the re“nement algo-
rithm to run in time O(mn) by storing for each element v � V its preimage set
E Š 1(v). Finding a block of Q that is a splitter of Q and performing the appro-
priate splitting takes O(m) t ime. (Obtaining this bound is an easy exercisein
list processing.) An O(mn) t ime bound for the entir e algorithm follows.

Improved algorithm. To obtain a faster version of the algorithm, we needa good
way to “nd splitter s. In additio n to the current part itio n Q, we maintain another
part itio n X such that Q is a re“nement of X and Q is stable with respect to
every block of X (in Section 9.3.4, Q will be called a relative regular equivalence
w. r. t. X ). Initia lly Q = P and X is the complete partitio n (containing V as its
single block). The improved algorithm consists of repeat ing the following step
until Q = X :
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Refin e: Find a block S � X that is not a block of Q. Find a block
B � Q such that B � S and |B | � |S|/ 2. Replace S within X by the
two sets B and S \ B ; replaceQ by Split (S \ B, Split (B, Q)).

The correctness of this improved algorithm follows from the correctness of the
original algorithm and from the two ways given previously in which a part itio n
can inherit stabilit y with respect to a set.

Special case: If E is a function. Before discussing this algorithm in general,
let us consider the special casein which E is a function, i.e., |E ({ v} )| = 1 for
all v � V . In this case,assume that Q is a partitio n stable with respect to a
set S that is a union of some of the blocks of Q, and B � S is a block of Q.
Then Split (B, Q) is stable with respect to S \ B as well. This holds, since if
B1 is a block of Split (B, Q), B1 � E Š 1(B ) implies B1 � E Š 1(S \ B ) = � ,
and B1 � E Š 1(S) \ E Š 1(B ) implies B1 � E Š 1(S \ B ). It follows that in each
re“nement step it su�ces to replace Q by Split (B, Q), since Split (B, Q) =
Split (S \ B, Split (B, Q)). This is the idea underlying Hopcroft•s •processthe
smaller half• algorithm for the functional coarsestpart itio n problem. There“ning
set B is at most half the size of the stable set S containing it.

Back to the general case. In the more general relat ional coarsestpart it ion prob-
lem, stabilit y with respect to both S and B doesnot imply stabilit y with respect
to S \ B , and Hopcroft•s algorithm cannot be used. This is a serious problem
sincewe cannot a�o rd (in terms of running time) to scan the set S \ B in order
to perform one re“nement step. Nevertheless,we are st ill able to exploit this
idea by re“ning with respect to both B and S \ B using a method that explicitly
scansonly B .

A preliminary lemma. Considera generalstep in the improved re“nement algo-
ri thm.

Lemma 9.2.15. Suppose that partit ion Q is stable with respect to a set S that
is a union of some of the blocks of Q. Suppose also that partit ion Q is re“ned
“rst with respect to a block B � S and then wit h respect to S \ B . Then the
following condit ions hold:

1. Re“ni ng Q with respect to B splits a block D � Q into two blocks D1 =
D � E Š 1(B ) and D2 = D Š D1 i� D � E Š 1(B ) �= � and D \ E Š 1(B ) �= � .

2. Re“ni ng Split (B, Q) with respect to S \ B spli ts D1 into two blocks D11 =
D1 � E Š 1(S \ B ) and D12 = D1 Š D11 i� D1 � E Š 1(S \ B ) �= � and D1 \
E Š 1(S \ B ) �= � .

3. Re“ni ng Split (B, Q) with respect to S \ B does not split D2.
4. D12 = D1 � (E Š 1(B ) \ E Š 1(S \ B )) .

Proof. Conditio ns 1 and 2 follow from the de“nitio n of Split .
Condit ion 3: Form Condit ion 1 it follows that if D is split, it is D � E Š 1(B ) �=

� . Since D is stable with respect to S, and sinceB � S, then D2 � D � E Š 1(S).
Sinceby Cond. 1 D2 � E Š 1(B ) = � , it follows that D2 � E Š 1(S \ B ).
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Condit ion 4: This follows from the fact that D1 � E Š 1(B ) and D12 =
D1 \ E Š 1(S \ B ). ��

Performing the three-way splitting of a block D into D11, D12, and D2 asde-
scribed in Lemma 9.2.15 is the hard part of the algorithm. Ident ity 4 of Lemma
9.2.15 is the crucial observation that we shall use in our implementat ion. Re-
member that scanning the set S \ B takes (possibly) too long to obtain the
claimed running time. We shall need an additio nal datastructure to determine
D1 \ E Š 1(S \ B ) = (D � E Š 1(B )) \ E Š 1(S \ B ) by scanning only B .

Running time of the improved algorit hm. A given element of V is in at most
log2 n+ 1 di�er ent blocks B usedasre“ning sets,since each successivesuch set is
at most half the size of the previous one. We shall describe an implementat ion of
the algorithm in which a re“nement step with respect to block B takes O(|B | +�

u� B |E Š 1({ u} )|) t ime. From this an O(m logn) overall time bound for the
algorithm follows by summing over all blocks B usedfor re“nement and over all
elements in such blocks.

Datastructures. (SeeSection 9.1.3 for an example of a much simpler algorithm
which already usessome of the ideas of this algorithm.)

Graph G = ( V,E) is represented by the sets V and E. Partitio ns Q and X
are represented by doubly linked lists of their blocks.

A block S of X is called simple if it contains only a single block of Q (equal
to S but indicated by its own record) and compound if it contains two or more
blocks of Q.

The various records are linked together in the following ways. Each edge uE v
points its source u. Each vertex v points to a list of incoming edgesuE v. This
allows scanning the set E Š 1({ v} ) in t ime proport ional to its size. Each block
of Q has an associated integer giving its sizeand points to a doubly linked list
of the vertices in it (allowing deletion in O(1) t ime). Each vertex points to the
block of Q containing it . Each block of X points to a doubly linked list of the
blocks of Q contained in it . Each block of Q points to the block of X containing
it. We also maintain a set C of compound blocks of X . Initia lly C contains the
single block V , which is the union of the blocks of P. If P contains only one
block (after the preprocessing), P it self is the coarseststable re“nement and we
terminate the algorithm here.

To make three-way split t ing (seeLemma 9.2.15) fast we needone more col-
lection of records. For each block S of X and each element v � E Š 1(S) we
maintain an integer Count (v, S) := |S � E({ v} )|. Each edge uE v with v � S
contains a pointer to Count (u, S). Initia lly there is one count per vertex (i. e.,
Count (v, V ) = |E({ v} )|) and each edgeuE v points to Count (u, V ).

This Count function will help to determine the set E Š 1(B ) \ E Š 1(S \ B ) in
t ime proport ional to |{ uE v ; v � B }| (seestep 5 below).

Both the space neededfor all the data str uctures and the initia lizat ion t ime
is O(m).

The re“nement algorithm consists of repeat ing re“nement steps unt il C is
empty.
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Performing one re“nement step. For clarity we divide one re“nement step into
7 substeps.
1. (sel ect a re“ni ng bl ock). Remove some block S from C. (Block S is a
compound block of X .) Examine the “r st two blocks in the list of blocks of Q
contained in S. Let B be the smaller one. (Break a tie arbitr arily.)
2. (up dat e X ). Remove B from S and create a new (simple) block S� of X
containing B as its only block of Q. If S is still compound, put S back into C.
3. (compute E Š 1(B )). Copy the vertices of B into a temporary set B � . (This
facilita tes splitting B with respect to itself during the re“nement .) Compute
E Š 1(B ) by scanning the edges uE v such that v � B and adding each ver-
tex u in such an edge to E Š 1(B ) if it has not already been added. Duplicates
are suppressedby marking vert ices as they are encountered and linking them
together for later unmarking. During the same scan compute Count (u, B ) =
|{ v � B ; uE v}| , store this count in a new integerand make u point to it . These
counts will be usedin step 5.
4. (re“ne Q wi th resp ect t o B ). For each block D of Q containing some
element (vertex) of E Š 1(B ), split D into D1 = D � E Š 1(B ) and D2 = D \ D1.
Do this by scanning the elements of E Š 1(B ). To processan element u � E Š 1(B ),
determine the block D of Q containing it and create an associated block D � if
one does not already exist. Move u from D to D � .

Dur ing the scanning, construct a list of thoseblocksD that aresplit . After the
scanning, processthe list of split blocks. For each such block D with associated
block D � , mark D � as no longer being associated with D (so that it will be
correctly processedin subsequent iterat ions of Step 4). Eliminate the record for
D if D is now empty and, if D is nonempty and the block of X containing D
and D � has beenmade compound by the split, add this block to C.
5. (compute E Š 1(B )\ E Š 1(S\ B )). Scan the edgesuE v with v � B � . To process
an edgeuE v, determine Count (u, B ) (to which u points) and Count (u, S) (to
which uE v points). If Count (u, B ) = Count (u, S), add u to E Š 1(B ) \ E Š 1(S \
B ) if it has not beenadded already.
6. (re“ne Q wi th resp ect t o S \ B ). Proceedexactly as in Step 4 but scan
E Š 1(B ) \ E Š 1(S \ B ) (computed in Step 5) instead of E Š 1(B ).
7. (up dat e coun t s). Scan the edges uE v such that v � B � . To processand
edgeuE v, decrement Count (u, S) (to which uE v points). If this count becomes
zero, delete the Count record, and make uE v point to Count (u, B ) (to which
u points). After scanning all the appropriate edges,discard B � .

Note that in step 5 only edgesterminat ing in B � arescanned.Step 5 iscorrect
(computes E Š 1(B ) \ E Š 1(S \ B )) since for each vertex u in E Š 1(B ), it holds
that u is in E Š 1(B ) \ E Š 1(S \ B ) i � u is not in E Š 1(S \ B ) i� all edges start ing
at u and terminating in S terminate in B i� Count (u, B ) = Count (u, S).

The correctnessof this implementat ion follows in a straight forward way from
our discussion above of three-way splitting . The time spent in a re“nement step
is O(1) per edge terminating in B plus O(1) per vertex of B , for a total of
O(|B | +

�
v� B |E Š 1({ v} )|) t ime. An O(m logn) t ime bound for the ent ire algo-
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rithm follows as discussedabove. It is possible to improve the e�ciency of the
algorithm by a constant factor by combining varioussteps, which have beenkept
separate for clari ty.

Adaptati on to R elated Probl ems. The above algorithm tur ns out to be the
key to e�cien t ly solve several part itio n re“nement problems that arise in this
chapter. We will brie”y sketch this generalit y.

Computing the maximal str ong str uctural equivalence(as described in Sec-
t ion 9.1.3) or the relative regular equivalence (seeSection 9.3.4) is much simpler
than computing the regular interior. Neverthelesswe can use the idea of itera-
tiv ely splitting blocks according to intersection with certain neighborhoods. (See
algorithm 21 and the comments in Section 9.3.4.) Theseproblemscan be solved
by algorithms that run in O(m + n).

Computing the coarsestequitable (seeSection 9.3.1) has beensolved earlier
than the problem of comput ing the regular interior (see[110] for an O(m logn)
algorithm and the comments in [459]).

Re“ning a partitio n w. r. t. mult iple relations (see De“ nit ion 9.4.1) is also
possiblein O(m logn) (if the number of relat ions is bounded by a constant). This
extension of the algorithm can be usedto compute the regular interior w. r. t . in-
coming and out-going edges. Short ly, a part itio n can be re“ned w. r. t . multiple
relat ions by performing steps 3…7(seeabove) for “ xed B and S successively for
all relations, one at a t ime. (Seee.g., [207].)

9.2.4 T he Role A ssignmen t Problem

In this section we investigate the computat ional complexity of the decision prob-
lem whether a given graph admits a regular role assignment with prespeci“ ed
role graph, or with prespeci“ed number of equivalenceclasses.In this sectionwe
consider only undirected graphs.

The most complete characterization is from Fiala and Paulusma [209]. Let
k � � and R be an undirected graph, possibly with loops.

Problem 9.2.16 (k-Role A ssignmen t (k-R A)). Given a graph G.
Questi on: Is there a regular equivalencefor G with exactly k equivalenceclasses?

Problem 9.2.17 (R-Role A ssignmen t (R-R A)). Given a graph G.
Questi on: Is there a regular role assignment r : V (G) � V (R) with role graph
R?

Note that we require role assignments to be surjective mappings.

T heorem 9.2.18 ( [209]) . k-RA is polynomial ly solvable for k = 1 and it is
N P -complete for all k � 2.

T heorem 9.2.19 ( [209]) . R-RA is polynomial ly solvable if each component of
R consists of a single vertex (with or without a loop), or consists of two vertices
without loops and it is N P -complete otherwise.
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We give the proof of one special caseof the R-Role Assignment Problem.

T heorem 9.2.20 ( [493]) . Let R0 be the graph in Figure 9.5. Then R0-RA is
N P -complete.

1 2

F ig. 9.5. Role graph R0

Proof. It is easyto seethat R-RA is in N P sinceone can easily check in poly-
nomial time whether a given function r : V � { 1, 2} is a 2-role assignment with
role graph R5.

We will show that the 3-sat is“abilit y problem (3SAT) is polynomially tr ans-
formable to R0-RA. So let U = { u1, . . . , un } be a set of variables and C =
{ c1, . . . , cm } be a set of clauses(each consisting of exactly three literals). We
will construct a graph G = ( V,E) such that G is 2-role assignable with role
graph R0 if and only if C is satis“able.

The construction will be made up of two components, tr uth-setting compo-
nents and satisfaction testing components (seeFigure 9.6).

u not u

2

2

1

c1 c2

c3

2

2

1

F ig. 9.6. Truth-setti ng component for variable u (left); sati sfacti on test ing component
for clause { c1 , c2 , c3} (right ) and communication edge if lit eral c1 equals u (dashed).
The roles of the verti ces in the pending paths are uniquely determined (as indicated
by the labels 1 resp. 2) if the role assignment should be regular wit h role graph R0

For each variable ui � U, there is a truth-setting component Ti = ( Vi , E i )
with
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Vi := { ui , ui , ai 1, ai 2, ai 3} ,

E i := { ui ui , ui ai 3, ui ai 3, ai 1ai 2, ai 2ai 3} .

Note that , although we write ui ui for the edge { ui , ui } , the graph is undirected.
The intuitio n behind the construction of Ti is the following: If a graph con-

taining Ti as a subgraph (such that the aij are adjacent only to the vert icesin Vi

as speci“ ed above) admits a regular role assignment r with role graph R0, then
necessarilyr (ai 1) = 1, since ai 1 has degree one and a vertex which is assigned 2
must have degree� 2. Then r (ai 2) = 2, sincea 1-vertex is adjacent to a 2-vertex
and r (ai 2) = 2, since a 2-vert ex is adjacent to a 2-vertex. Finally exactly one of
ui or ui is assigned2, meaning that variableui is set to tr ue or false, respectively.
Thus component Ti ensuresthat a variable gets either tr ue or false.

For each clause cj � C, let vertices cj 1, cj 2, and cj 3 be three vertices corre-
sponding to the threeliter als in the clausecj . Then there is a sat isfaction testing
component Sj = ( V �

j , E �
j ) with

V �
j := { cj 1, cj 2, cj 3, bj 1, bj 2, bj 3} ,

E �
j := { cj 1cj 2, cj 1cj 3, cj 2cj 3, cj 1bj 3, cj 2bj 3, cj 3bj 3, bj 1bj 2, bj 2bj 3} .

The intuitio n behind the construction of Sj is the following: If a graph con-
taining Sj as a subgraph (such that the bjl are adjacent only to the vert ices in
Vj as speci“ ed above) admits a regular role assignment r with role graph R0,
then necessarilyr (bj 1) = 1, r (bj 2) = r (bj 3) = 2, which ensures that one of the
vertices cj 1, cj 2, cj 3 is assigned1, thus ensuring that every adjacent vertex of
this 1-vertex must be assigned 2. This will be crucial later.

The construction so far is only dependent on the number of variables and
clauses.The only part of the construction that depends on which liter als occur
in which clausesis the collection of communication edges. For each clausecj =
{ x j 1, x j 2, x j 3} � C the communication edgesemanat ing from Sj are given by

E ��
j := { cj 1x j 1, cj 2x j 2, cj 3x j 3} .

(The x jl are either variables in U or their negations.) Not ice that for each cjk ,
there is exactly onevertex that is adjacent to cjk in E ��

j , which is the correspond-
ing liter al vertex for cjk in the clausecj .

To complete the construction of our instance of R0-RA, let G = ( V,E) with
V being the union of all Vi s and all V �

j s and E the union of all E i s, all E �
j s and

all E ��
j s.

As ment ioned above, given a regular role assignment for G with role graph
R0, for each j = 1 , . . . , m there is a vertex cjk such that r (cjk ) = 1 implying
that the corresponding adjacent literal is assigned 2. Set t ing this literal to tr ue
will satisfy clausecj .

Thus we have shown that the formula is sat is“able if G is regularly R0

assignable.
Conversely, suppose that C has a satisfying tr uth assignment . We obtain an

assignment r : V � { 1, 2} as follows. For each i = 1 , . . . , n set r (ui ) t o 2 (and
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r (ui ) to 1) if and only if variable ui is tr ue and set the role of the vertices aik

and bjk as implied by the fact that r should be regular (seeabove). Moreover,
for each j = 1 , . . . , m let cjk , k � { 1, 2, 3} , be some vertex whosecorresponding
liter al in the clause cj is tr ue … such a k exists since the tr uth assignment is
satisfying for C. Set r (cjk ) := 1 and r (cjl ) := 2 for l � { 1, 2, 3} , l �= k.

The proof is complicated a bit by the fact that more than one liter al in a
clausemight be true, but setting r (cjk ) = 1 is allowed for only one k � { 1, 2, 3} .
Sincea 2-vertex may be adjacent to another 2-vertex, this does not destroy the
regulari ty of r . ��

9.2.5 Existenc e of k -Role A ssignmen t s

We have seenin the previous section that the decision whether a graph admits
a regular equivalence with exactly k equivalence classesis N P -complete for
generalgraphs. Nevertheless,there are easy-to-verif y su�cien t , if not necessary,
conditio ns that guarantee the existence of regular k-role assignments. Brie”y,
the conditio n is that the graph di�er s not too much from a regular graph.

T heorem 9.2.21 ( [474]) . For all k � � there is a constant ck � � such that
for all graphs G with minimal degree � = � (G) and maximal degree � = � (G)
sati sfying

� � ck log(� ) ,

there is a regular equivalence for G with exactly k equivalence classes.

To excludetrivial counterexampleswe assume in the following that all graphs
in question have at least k vertices.

For the proof we needa uniform version of the Lo vasz Local Lemma.

T heorem 9.2.22 ( [25, Chapt er 5 Corolla r y1.2]) . Let A i , i � I , be events
in a discrete probabilit y space. If there exists M such that for every i � I

|{ A j ; A j is not independent of A i }| � M ,

and if there exists p > 0 such that Pr(A i ) � p for every i � I , then

ep(M + 1 ) � 1 = Pr

�
*

i � I

A i



> 0 ,

where e is the Eule r number e =
� �

i =0 1/i !. ��

Proof (of Theorem 9.2.21). De“ne r : V � { 1, . . . , k} as follows: For every v �
V choose r (v) uniformly at random from { 1, . . . , k} .

For v � V , let Av be the event that r (N (v)) �= { 1, . . . , k} . It is

Pr(Av ) � k
#

k Š 1
k

$ d(v)

� k
#

k Š 1
k

$ � (G)

.
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Becauseall r (w) are chosenindependent ly and for a “ xed value i , the probabilit y

that i is not used for any of the vert icesadjacent to v is
�

kŠ 1
k

� d(v)
, and there

are k choicesfor i .
Also note that Av and Aw arenot independent if and only if N (v)� N (w) �= � .

Hence,Av with M := � (G)2 and p := k
�

kŠ 1
k

� � (G)
satis“ esthe conditio ns of the

Lo vasz Local Lemma. Therefore,

ek
#

k Š 1
k

$ � (G)

(� (G)2 + 1 ) � 1  Pr

�
*

v� V

Av



> 0 . (9.1)

If the righthand side of (9.1) holds, there exists at least one r such that
r (N (v)) = { 1, . . . , k} for every v � V , that is, there exists at least one regu-
lar k-role assignment . In order to “nis h the proof we note that the lefthand side
of (9.1) is equivalent to

� (G) �
log(ek(� (G)2 + 1 ))

log
�

k
kŠ 1

 .

Clearly, there exists a constant ck such that ck log(� (G)) is greater than the
righthand side of the above inequality. ��

Conclusion. Regular equivalencesare well investigated in computer science.Re-
sults indicate that many regular equivalencesexist even in irregular graphs, but
it is unclear how to de“ne and/ or compute the best, or at least a good one. Fast
algorithms exist for the computat ion of the maximal regular equivalenceor for
the regular interior of an a priori part it ion. The maximal regular equivalence
could be meaningful for directed graphs (for undirected it is simply the divi-
sion into isolates and non-isolates). Also, the regular interior could be a good
role assignment if one has an idea for the part itio n to be re“ned. Specifying the
number of equivalence classesor the role graph yields N P -hard problems, in
the general case.Opt imization approaches for these problems are presented in
Section 10.1.7 in the next chapter.

9.3 Ot her Equiv alences

In this section we brie”y ment ion other (than structural or regular) types of role
equivalences.

9.3.1 Exact Role A ssignmen t s

In this section we de“ne a class of equivalence relat ions that is a subset of
regular equivalences.These equivalences will be called exact. The associated
part itio ns are also known as equitable parti ti ons in graph theory, they have “ rst
beende“ned as divisors of graphs.
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While for regular equivalencesonly the occurrence or non-occurrenceof a
role in the neighborhood of a vertex matters, for exact equivalences,the number
of occurrence matters.

The graph model of this section are undirected multig raphs.

D e“nition 9.3.1. A role assignment r is called exact if for all u, v � V

r (u) = r (v) = r (N (u)) = r (N (v)) ,

where the last equation is an equation of multi-sets, i. e., vertices, that have
the same role, must have the same number of each of the other roles in their
neighborhoods.

The coloring in Figure 9.7 de“nes an exact role assignment for the shown graph.

F ig. 9.7. An exact role assignment

While an equivalence is regular for a multig raph if and only if it is regular
for the induced simple graph (each edgeat most once), for exact equivalences
the multiplicit y of an edge matter s.

It is straight forward to seethat exact role assignments are regular, the con-
verse is not t rue.

An equivalent de“nitio n is the following.

D e“nition 9.3.2 ( [247]). A parti ti on P = { C1, . . . , Ck } of the vertex set V of
an undirected (multi-)graph G = ( V,E) is called equitable if there are integers
bij , i, j = 1 , . . . , k, such that each vertex in class Ci has exactly bij neighbors in
class Cj . The matrix B = ( bij ) i, j =1 ,... ,k de“nes a (directed) mult i-graph, which
is called the quotient of G modulo P, denoted by G/ P.

A part it ion is equitable if and only if the associated role assignment is exact.
The above de“nitio n also extends the de“nitio n of the quotient or role graph
(seeSection 9.0.2) to multig raphs. Note that this is possibleonly for exact role
assignments.

Note that even if the graph is undirected the quotient is possibly directed,
meaning that the multiplicit y of an edge may di�er from the multiplicit y of the
reversed edge. This happens always if two •adjacent• equivalence classesare of
di� erent size.

Exact role assignments are compatible with algebraic propert ies of a graph.
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T heorem 9.3.3 ( [247]) . Let G be a graph, P an equitable partition. Then, the
characteristic polynomial of the quotient G/ P divides the characteristic polyno-
mial of G. ��

This theorem implies that the spectrum of the quot ient G/ P is a subset of the
spectrum of G.

The set of all exact role assignments of a graph forms a latt ice [191]. The
maximal exact role assignment of a graph can be computed by an adapt ion of
the algorithm in Section 9.2.3. (See[110] and the comments in [459].)

Many problems around exact role assignments are N P -completeas well. For
example the problem of deciding if a graph G admits an exact role assignment
with quot ient R is N P -complete if both G and R are part of the input, or for
some “xed R. This holds, since the N P -complete problem of deciding whether
a 3-regular graph has a perfect code [370], can be formulated as the problem of
deciding whether G has an exact role assignment with quotient

R =
6

0 3
1 2

7
.

The quotient over an equitable part itio n has much more in common with the
original graph than, e.g., the role graph over a regular equivalence. Exact role
assignments also ensure that equivalent vertices have the same degree,which is
not t rue for regular role assignments.

Conclusion. Exact role assignments, also called equitable part it ions are well
investigated in algebraic graph theory. While some problems around equitable
part itio ns are N P -complete, there are e�cien t algorithms to compute the max-
imal equitable partitio n of a graph, or to compute the coarsest equitable re-
“ nement of an a priori part it ion. These algorithms could be used to compute
role assignments, but, due to ir regularities, the results contain in most casestoo
many classesand miss the underlying (possibly pertur bed) str ucture. Brandes
and Lerner [97] intr oduced a relaxat ion of equitable part itio ns that is tolerant
against irregulari t ies.

9.3.2 A utom orphi c and Orbi t Equi valence

Auto morphic equivalenceexpressesinterchangeabilit y of vertices.

D e“nition 9.3.4 ( [191]). Let G = ( V,E) be a graph, u, v � V . Then u and v
are said to be automorphically equivalent if there is an automorphism � of G
with � (u) = v.

Auto morphically equivalent vert ices cannot be distinguished only in terms of
the graph structure. Therefore it could be argued that at least automorphically
equivalent vertices should be consideredto play the same role.

It is easy to see that str ucturally equivalent vert ices are automorphically
equivalent .
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A part it ion of the vertex set which has the propert y that each pair of equiv-
alent vertices is automorphically equivalent is not necessarily a regular equiva-
lence.However we have the following result.

Proposit ion 9.3.5 ( [190]) . Let G = ( V,E) be a graph with automorphism
group A(G), and H < A(G) bea subgroup of A(G). Then assigning roles accord-
ing to the orbits of H de“nes an exact role assignment for G. Such a partit ion
is called an orbit part it ion.

Proof. Let r be a role assignment as in the formulat ion of the proposit ion. If
r (u) = r (v) then there exists � � H such that � (u) = v. If x � N + (u), then
� (x) � N + (� (u)) = N + (v). Furt hermore r (x) = r (� (x)) by de“nitio n. It follows
that r (N + (u)) � r (N + (v)) (as multisets). The other inclusion and the corre-
sponding assert ion for the in-neighborhoods is shown similar. ��

In part icular, orbit equivalencesare regular.
For example, the coloring in Figure 9.7 de“nes the orbit part it ion of the

automorphism group of the shown graph.
The set of orbit equivalencesforms a proper subset of the set of all exact

equivalences,which can be proved by any regular graph which is not vert ex-
t ransit ive. For example, the complete part it ion for the graph in Figure 9.7 is
exact but not an orbit part itio n.

The above propositio n can also be used to prove that every undirected role
primitiv e graph (seeSection9.2.1) is a graph with t rivial automorphism group
[190]. This is not t rue for directed graphs as can be seen by directed cyclesof
prime length.

Orbit equivalencehas the nice feature that its conditio n is invariant w. r. t .
a shift to the complement graph. This doesnot hold neither for regular nor for
exact equivalence.

The computat ion of orbit equivalencesis related to the problem of computing
the automorphism group which has open complexity status.

Conclusion. Auto morphically equivalent vert ices cannot be distinguished in
terms of graph structure, but only by additio nal labels or attr ibutes. It could
therefore be argued that at least automorphically equivalent vert ices play the
same role. Computat ion of automorphic equivalenceseemsto be hard, but, in
irregular networks, there won•t be any signi“ cant automorphisms anyway.

9.3.3 Perfect Equiv alenc e

Perfect equivalence is a restriction of regular equivalence. It expressesthe idea
that there must be a reasonfor two vertices for being not equivalent .

D e“nition 9.3.6 ( [191]). A role assignment r de“nes a perfect equivalenceif
for all u, v � V

r (u) = r (v) � r (N + (u)) = r (N + (v)) and r (N Š (u)) = r (N Š (v)) .
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A regular equivalence is perfect if and only if the induced role graph has no
strong structural equivalent vertices (seeSection 9.1).

The set of perfect equivalence relations of a graph is a lattice [191], which
is neither a sublatt ice of all equivalence relat ions (Section 9.1.1) nor of the lat-
tice of regular equivalence relations (Section 9.2.2). A perfect interior of an
equivalence relat ion � would be a coarsest perfect re“nement of � (compare
De“ nit ion 9.2.10). In contrast to the regular interior, the perfect interior does
not exist in general.

T heorem 9.3.7. In general, the transitive closure (see Section 9.1.1) of the
union of two perfect equivalence relations is not perfect. In particular, for some
equivalences there is no perfect interior.

3 4

5

6

1

2

F ig. 9.8. Graph for the proof of Theorem 9.3.7. Supremum of two perfect equivalences
is not perfect

Proof. Consider the graph in Figure 9.8 and the two perfect part itio ns P1 =
{{ 1, 5} , { 2, 6}{ 3, 4}} and P2 = {{ 1, 2} , { 5, 6}{ 3} , { 4}} . The tr ansitiv e closure of
P1 and P2 is P = {{ 1, 2, 5, 6} , { 3, 4}} , which is not perfect.

For the secondstatement, note that P1 and P2 are both perfect re“nements
of P and are both maximal w. r. t . this propert y. ��

The second statement has a more trivial proof: For a graph with two strong
structurally equivalent vert ices,the identit y part itio n has no perfect re“nement .

Some decision problems concerning perfect equivalenceare N P -complete as
well. This can be seenby Theorems 9.2.18 and 9.2.19, restricted to role graphs
without str ong str ucturally equivalent vert ices.

Although perfect equivalences rule out some trivial regular equivalences,
there is no evidence why roles shouldn•t be str ong str ucturally equivalent .

Conclusion. Perfect equivalence is a restriction of regular equivalence, but it
doesn•t seem to yield better role assignments. Some mathemat ical properties
of regular equivalencesget lost and there are exampleswhere the condit ion on
perfect equivalence rulesout good regular role assignments.

9.3.4 R elati ve R egul ar Equi valence

Relative regular equivalence expresses the idea that equivalent vertices have
equivalent neighborhoods in a coarser, prede“ned measure.
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D e“nition 9.3.8 ( [90]). Let G = ( V,E) be a graph and r : V � W and
r0 : V � W0 be two role assignments. Then, r is called regular relative to r0

if r � r0 (see Section 9.1.1 for the partial order on the set of role assignments)
and for all u, v � V

r (u) = r (v)  r0(N + (u)) = r0(N + (v)) and r0(N Š (u)) = r0(N Š (v)) .

A typical applicat ion [90] of relat ive regular equivalenceis givenby a network
of symmetric fr iendship t ieswhich a priori is divided into two disjoint friendship
cliquesA and B . Assumethat within each clique every member has at least one
tie to some other member of the same clique. The part itio n into thesetwo cliques
would be regular if either there is no t ie between the two cliques or each actor
would have, in additio n to the int ra-group ties, at least onet ie to a member of the
other group. But lets assumethat some, but not all, actors have fr iendship t ies
to members of the other group. The partitio n into A and B is no longer regular.
Now we can split each group into those actors having t ies to some member of
the other group and those who don•t. Say we obtain the part itio n into A1, A2,
B1, and B2. Neither is this part itio n (in general) regular: There might be some
actors in, say, A1 having int ra-group t ies only with members of A1, some only
with members of A2, some with both; they don•t have equivalent neighborhoods.
But they have equivalent neighborhoodswith respect to the coarsepart itio n into
A and B . Thus, the partitio n into A1, A2, B1 and B2 is regular relat ive to the
part itio n into A and B .

Relativ e regularity below a “xed equivalence is preserved under re“nement .
(Compare Prop. 9.1.7 for a similar proposition for str uctural equivalence.)

Proposit ion 9.3.9. Let � , � 1, and � 2 be equivalence relations on V such that
� 1�� 2 and � 2 is regular relative to � . Then so is � 1.

Similar to Prop. 9.1.7, this propositio n implies that the set of equivalencesthat
are regular relat ive to a “ xed equivalence� is a sublatt iceof all equivalencesand
is completely described by the maximum of this set, denotedhereby MRRE( � ).

Computing the MRRE(� ) is possible in linear t ime by an adaptat ion of
the algorithm 21 for computing the maximal str uctural equivalence:Instead of
splitting equivalence classesfrom the point of view of single vertices, classes
are split from the point of view of the classesof � (compare the algorithm in
Section 9.2.3). Note that the classes of � are “ xed and the MRRE(� ) has been
found after all classesof � have beenprocessedonce.

Each re“nement step in the CATREGE algorithm (seeSection 9.2.3) com-
putes an equivalencethat is regular relativ e to the previous one, but the running
t ime of one step is in O(n2), which is worsethan the above described algorithm
on sparsegraphs.

Conclusion. Relativ e regular equivalenceis computat ionally simple but it needs
an a priori partitio n of the vertices and, since its compat ibilit y requirement is
only local, is not expected to represent global network structure. It has most
been applied in connection with multipl e and composite relations (see, e.g.,
Winship-Pattison Role Equivalencein Section 9.5.1).
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9.4 Graphs wit h Mult iple Relat ions

Actors in a social network are often connected by more than one relation. For
example, on the set of employeesof a company there might be two relat ions
GivesOrdersTo and IsF r iendO f . It is often insu�cien t to tr eat theserela-
tions separately one at a t ime since their interdependencematters.

In this section we generalize the graph model to graphs with multiple rela-
t ions, that is, collections of graphs with common vertex set.

D e“nition 9.4.1. A graph with mult iple relationsG = ( V,E) consists of a “ni te
vertex set V , and a “ni te set of relations (“ni te set of edge sets) E = { E i } i =1 ,... ,p ,
where p � � and E i � V × V .

For the remainder of this section we often write •graph• meaning •graph with
multiple relations•. A graph is ident i“ed with the one resulting from deleting
duplicaterelat ions,wherewesay that two relationsareequal if they consist of the
same pairs of vertices. That is relat ions don•t have •labels• but are distinguished
by the pairs of vertices they contain.

The role graph of a graph with mult iple relat ions is again a graph with
(possibly) mult iple relat ions. (Compare De“ nit ion 9.0.3 of the role graph of a
graph with one relat ion.)

D e“nition 9.4.2. Let G = ( V,E) be a graphwith mult iple relations, and r : V �
W be a role assignment. The role graph of G over r is the graph R = ( W, F ),
where F = { Fi ; i = 1 , . . . , p} , where Fi = { (r (u), r (v)) ; (u, v) � E i } .

Note that Fi may be equal to Fj even if E i �= E j and that duplicate edge
relations are eliminated (F is a set).

From the above de“ nit ion we can seethat role assignments are actually map-
pings of vertices and relat ions. That is r : V � W de“nes uniquely a mapping
of relat ions r rel : E � F . Note that r rel does not map edges of G onto edgesof
R but relations, i. e. edgesets,onto relations.

Having more then one relat ion, the possibilities for de“ning di�er ent types of
role assignments explode. See [579, 471] for a large number of possibilities. We
will sketch some of them.

The easiest way to t ranslate de“nitio ns for di�er ent types of vertex parti-
t ions (seeSections 9.1, 9.2, and 9.3) to graphs with mult iple relat ions is by the
following generic de“nitio n.

D e“nition 9.4.3. A role assignment r : V � W is said to be of a speci“ c type
t for a graph G = ( V,E) with mult iple relations, if for each E � E , r is of type t
for the graph (V,E).

We illustr ate this for the de“nitio n of regular equivalencerelations.

D e“nition 9.4.4 ( [579]). Let G = ( V,E) be a graph. A role assignment r : V �
W is called regular for G if for each E � E , r is regular for graph (V,E).
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Besides this natural t ranslation of role assignments from graphs to graphs with
multiple relations there is a weaker form (e.g. weak regular network homomor-
phism [579]), which makes useof the mapping of relat ions r rel .

Theorems for certain types of vertex part it ions (seeSections 9.1, 9.2, and 9.3)
mostly t ranslate to the caseof mult iple relat ions if we apply De“nit ion 9.4.3.

Next we intr oduce a stronger form of compat ibilit y with multiply relat ions.
Regular role assignments as de“ned in De“nit ion 9.4.4 make sure that equiv-
alent verticeshave, in each of the graphs relat ions ident ical t ies to equivalent
counterparts. Sometimes it is considered as desirable that they have the same
combinations of relat ions to equivalent counterpart s. That is, if we consider the
example at the beginning of this section, it matter s whether an individual gives
orders to someone and is the friend of another individua l or whether he gives
orders to a friend.

De“ nit ion 9.4.7 formalizesthis. First we needsome preliminary de“nit ions:

D e“nition 9.4.5 ( [579]). Given a graph G = ( V,E) and u, v � V , we de“ne
the bundle (of relations) from u to v as

Buv = { E � E ; (u, v) � E } .

Thesebundles de“ne a new graph with multiple relat ions.

D e“nition 9.4.6 ( [191, 579]). Let G = ( V,E) be a graph and B be the set of
all non-empty bundles. For each bundle B � B de“nes a graph with vertex set
V and edge set M B where (u, v) � M B if and only if Buv = B . M B is called a
multiplex relation induced by the graph G = ( V,E). Let M = { M B } B �B , then
MPX (G) := (V,M ) is called the multiplex graph of G.

For each pair of vertices (u, v) there is a unique bundle associated with it.
This bundle may be either empty or a member of B (the set of all non-empty
bundles). This implies that either (u, v) is a member of no M B or has only one
such multiplex relat ion. Thus, the multiplex graph of a graph can be viewed
as a graph with a single relation, but with edge-labels. We call such a graph a
mult iplex graph [579]. That is, a multiplex graph is a graph G = ( V,M ) such
that for each pair of relations M 1, M 2 � M either M 1 � M 2 = � or M 1 = M 2

holds.
For example, the multiplex graph MPX (G) of a graph G, isa multiplex graph.
Now we can de“ne the type of equivalencerelation which ensuresthat equiv-

alent vertices have the same bundles of relations to equivalent counterparts.

D e“nition 9.4.7 ( [191]). Let G = ( V,E) be a graph with mult iple relations.
A role assignment r : V � W that is regular for MPX (G) is called multiplex
regular for G.

As in the above de“nitio n one might de“ne multiplex strong str uctural role
assignments, but one can easily veri fy that a st rong structural role assignment
on a graph (with multiple relat ions) is necessarily strong structural on the cor-
responding multiplex graph.



246 J. Lerner

Remark 9.4.8. An equivalent de“nitio n of multiplex regular role assignments is
given in [83]: Let G = ( V,E) be a graph, where E = { E1, . . . , Ep} . Let

M :=

�
*

i � I

E i ; I � { 1, . . . , p} , I �= �

�

.

Then the regular role assignments of (V,M ) are exactly the multiplex regular
role assignments of G.

Regular role assignments of a graph are in general not mult iplex regular.
Regularity however is preserved in the opposite direction.

Proposit ion 9.4.9 ( [579]) . If G = ( V,E) is a graph, C := MPX (G), and
r : V � W a role assignment then the following holds.

1. I f r is regular for C then it is regular for G.
2. I f r is strong structural for C then it is strong structural for G.

Proof. For the proof of 1 and 2 let E � E be a relat ion of G and let u, v, u� � V
with (u, v) � E and r (u) = r (u� ). Let Buv be the bundle of relat ionsof u and v (in
part icular E � Buv ) and let M := { (w, w� ) ; Bww � = Buv } be the corresponding
multiplex relat ion (in part icular (u, v) � M ).

1. If we assume that r is regular for C, there exist v� � V such that r (v� ) = r (v)
and (u� , v� ) � M , in part icular it is (u� , v� ) � E which shows the out-part of
regulari ty for G.

2. If we assume that r is strong structural for C, then (u� , v) � M , in part icular
it is (u� , v) � E which shows the out-part of the conditio n for r being strong
structural for G.

The in-part s are t reated analogously. ��

9.5 T he Semigroup of a Graph

Social relations also have an indirect in”uence:If A and B are friends and B and
C are enemiesthen this (probably) has some in”uenceon the relation between
A and C.

In this section we want to formalize such higher-order relat ions and highlight
the relationship with role assignments.

The following de“nitio ns and theorems can be found, essent ially, in [579], but
have beengeneralized here to graphs with multiple relations (seeSection 9.4).

Labeled paths of relations (like EnemyOf A Friend ) are formalized by com-
posit ion of relat ions; beware of the order.

D e“nition 9.5.1. If Q and R are two binary relations on V then the (Boolean)
product of Q with R is denoted by QR and de“ ned as

QR := { (u, v) ; � w � V such that (u, w) � Q and (w, v) � R} .
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Boolean multiplica t ion of relat ions corresponds to Boolean multiplica t ion of
the associated adjacency matrices, where for two { 0, 1} matrices A and B the
Boolean product AB is de“ned as

(AB ) ij =
n8

k=1

A ik $ Bkj .

It is alsopossibleto de“ne real multiplica t ion of weighted relat ions or multi-
edge setsby real matr ix multiplica t ion (this has beenadvocated e. g., in [89]).

D e“nition 9.5.2. Let G = ( V,E) be a graph (wit h multiple relations). Then,
the semigroup induced by G is de“ ned to be

S(G) := { E1 . . . Ek ; k � � , E1, . . . , Ek � E } .

We also wri te S(E) for S(G).

Note that two elements in S(G) are equal if and only if they contain the same
set of ordered pairs in V × V .

Furt hermore, note that S(G) is indeeda semigroup since the multiplica t ion
of relat ions is associative, i. e., (AB )C = A(BC ) holds for all relations A, B ,
and C.

In general, S(G) has no neutral element , relat ions have no inverse and the
multiplica t ion is not commutat ive.

Although the length of st rings in the de“nit ion of S(G) is unbounded, S(G)
is “nite since the number of its elements is bounded by 2( |V |2 ) , the number of
all binary relations over V .

The interesting thing about composite relat ions is the ident ities sat is“ed
by them. For example we could imagine that on a network of individuals with
two relat ions Friend and Enemy, the identities FriendFriend=Friend and
Friend Enemy=E nemyFriend = Enemy hold. At least the fact whether these
identities hold or not gives us valuable informat ion about the network. In all
casesident it ies exist necessarilysince S(G) is “nite but the set of all str ings
{ E1 . . . Ek ; k � � , E i � E } is not.

Role assignments ident ify individuals. Thus they int roduce more ident ities
on the semigroup of the graph. The remainder of this section investigates the
relat ionship betweenrole assignments and the ident i“ cation of relat ions.

A role assignment on a graph induce a mapping on the induced semigroup.

D e“nition 9.5.3 ( [579]). Let G = ( V,E) be a graph with mult iple relations and
r : V � W a role assignment. For Q � S(G), r rel (Q) (compare Section 9.4) is
the relation on W de“ned by r rel (Q) := { (r (u), r (v)) ; (u, v) � Q} called the
relation induced by Q and r . Thus r induces a mapping r rel on the semigroup
S(G).

Note that in general r rel (S(G)) is not the semigroup of the role graph of G
over r , however, this is t rue if r is regular. Role assignments do not necessarily
preserve compositio n, i. e., r rel is not a semigroup homomorphism. One of the
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main results (seeTheorem 9.5.6) of this section is that regular role assignments
have this property.

Lemma 9.5.4 ( [579]). Let G = ( V,E) be a graph and r : V � W a role as-
signment which is regular with respect to Q and R � S(G). Then, r rel (QR) =
r rel (Q)r rel (R).

Proof. Let w, w� � W with (w, w� ) � r rel (QR). By the de“nitio n of r rel (QR)
there exist v, v� � V such that f (v) = w, f (v� ) = w� , and (v, v� ) � QR. Therefore
there is a vertex u � V with (v, u) � Q and (u, v� ) � R implying (w, r (u)) �
r rel (Q) and (r (c), w� ) � r rel (R), whence (w, w� ) � r rel (Q)r rel (R). We conclude
r rel (QR) � r rel (Q)r rel (R). Note that this holds without the assumption of r
being regular.

Conversely, let w, w� � W with (w, w� ) � r rel (Q)r rel (R). Then there is a
z � W such that (w, z) � r rel (Q) and (z,w� ) � r rel (R). By the de“nitio n of
r rel there are v, v� , u1, u2 � V with r (v) = w, r (v� ) = w� , r (u1) = r (u2) = z,
(v, u1) � Q, and (u2, v� ) � R. Since r is regular and r (u1) = r (u2) t here is a
vertex v�� � V with r (v�� ) = f (v� ) and (u1, v�� ) � R. It follows that (v, v�� ) � QR
whence(w, w� ) = (r (v), r (v�� )) � r rel (QR), implying r rel (Q)r rel (R) � r rel (QR).

��

The next theorem shows that regular or strong structural on the set of gen-
erator relat ions E implies regular resp. st rong structural on the semigroup S(E).
This is the second step in proving Theorem 9.5.6.

T heorem 9.5.5 ( [579]) . Let G = ( V,E) be a graph. I f r : V � W is regular
(strong structural) wit h respect to E then r is regular (strong structural) for any
relation in S(G).

Proof. By induction on the str ing length of a relation in S(G) written as a
product of generat ing relat ions (see de“nitio n 9.5.2), it su�ces to show that
if r is regular (strong structural) with respect to two relations Q, R � S(G),
then it is regular (strong structural) for the product QR. So let Q, R � S(G) be
two relations and u, v � V such that (r (u), r (v)) � r rel (QR). By Lemma 9.5.4,
this implies (r (u), r (v)) � r rel (Q)r rel (R), whence there is a w � W such that
(r (u), w) � r rel (Q) and (w, r (v)) � r rel (R). Since r is surjective, there exists
u0 � V with r (u0) = w, and it is (r (u), r (u0)) � r rel (Q) and (r (u0), r (v)) �
r rel (R).

Now, suppose that r is regular with respect to Q and R. We have to show
the existence of c,d � V such that (c,v) � QR, (u, d) � QR, r (c) = r (u) and
r (d) = r (v). Since r is regular with respect to Q and (r (u), r (u0)) � r rel (Q)
there exists u1 � V such that r (u1) = r (u0) and (u, u1) � Q. Simila rly, since r
is regular with respect to R and (r (u0), r (v)) � r rel (R), there exists d � V such
that r (d) = r (v), and (u1, d) � R. Since (u, u1) � Q and (u1, d) � R it follows
(u, d) � QR, which is the “ rst half of what we have to show. The proof of the
second half can be done along the same lines.
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Now, suppose that f is strong structural with respect to Q and R. Then
(r (u), r (u0)) � r rel (Q) and (r (u0), r (v)) � r rel (R) immediately implies (u, u0) �
Q and (u0, v) � R, whence(u, v) � QR. ��

The next theoremmight be seenas the main result of this section. It states
that regular roleassignments inducehomomorphismson the inducedsemigroups.

T heorem 9.5.6 ( [579]) . Let G = ( V,E) be a graph with mult iple relations. If
r : V � W is a regular role assignment with role graph R, then r rel : S(G) �
S(R) is a surjective semigroup homomorphism.

Proof. We know from Lemma 9.5.4 that the ident ity r rel (QR) = r rel (Q)r rel (R)
holds whenever r is regular with respect to Q and R. Theorem 9.5.5 states that
r is regular with respect to all relat ions in S(G). Thus the imageof S(G) under
r rel is equal to S(R) (the imagesof the generator relations E are the generator
relat ions of the semigroup of the role graph S(R)) and r rel is a semigroup ho-
momorphism. ��

The condit ion that r be regular, is not necessaryfor r rel being a semigroup
homomorphism. Kim and Roush [355] gave a more general su�cien t conditio n.
Also compare [471].

The next theorem shows that the role graph of a strong structural role as-
signment has the same semigroup as the original graph.

T heorem 9.5.7 ( [579]) . Let G = ( V,E) be a graph with mult iple relations.
If r : V � W is a strong str uctural role assignment with role graph R, then
r rel : S(G) � S(R) is a semigroup isomorphism.

Proof. By Theorem 9.5.6 r rel is a surjective semigroup homomorphism. It re-
mains to show that r rel is injectiv e. So let Q, R � S(G) with r rel (Q) = r rel (R).
Then, for all u, v � V if holds (u, v) � Q i� (r (u), r (v)) � r rel (Q) (since r is
strong) i� (r (u), r (v)) � r rel (R) i � ( u, v) � R (since r is strong). ��

Do Semigroup-Hom omorphi sms R educe N etworks? The above theorems
give the idea to an alternativ e approach to “nd role assignments: In Theorem
9.5.6 it has been shown that role assignments int roduce new ident it ies on the
semigroup of (generator and compound) relations of a network. Conversely, one
could impose ident it ies on relations that are almost satis“ ed, or that are con-
sidered to be reasonable. Now the interesting question is: Does identi“ cation of
relations imply identi“ cation of vertices of the graph which generated the semi-
group? (See[73].)

That is, given a graph G with semigroup S(G) and a surjective semigroup
homomorphism S(G) � S� onto some semigroup S� , is there a graph G� and a
graph homomorphism G � G� such that S� is the semigroup generated by G�?

This would be the counterpart of Theorem 9.5.6, which states that role as-
signments on graphs induce, under the conditio n of regularity, reductions of the
induced semigroups, (i. e., surjective semigroup homomorphisms).

The answer is in generalno, simply for the reason that not every semigroup is
a semigroup of relat ions. But under what condit ions on S� and on the semigroup
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homomorphism would we get a meaningful role graph and a meaningful role
assignment?

Although the question is open for the general casesome examplescan be
found in [89] and [471].

9.5.1 W inship-P attison R ole Equiv alence

The conditio n for regular equivalent vert icesis: equivalent vertices havethe same
ties to equivalent counterparts. In this section the phrase to equivalent counter-
parts is replacedby the weaker requirement to some verti ces. As mentioned in
Remark 9.5.9 the four equivalencesde“ned in this section, are special casesof
relativ e regular equivalence(seeSection 9.3.4).

D e“nition 9.5.8. Let G = ( V,E) be a graph and � an equivalence on V. Then
� is said to be a weak role equivalence for G if for all u, v, w � V and E � E ,
u � v implies both

…uRw implies there exists x such that vRx,
…wRu implies there exists x such that xRv.

Note that in contrast to the de“nit ion of regular equivalence one does not con-
sider the role of x. So weakrole-equivalent verti cesdon•t share the samerelat ions
to equivalent counterparts, but they only share the same relations. If the graph
has onesingle relation, the maximal weak roleequivalenceis simply the partitio n
into isolates,sinks, sources,and vert iceswith positiv e in- and out-degree.

The indi�er ence in regard to the role of adjacent vertices makes weak role
equivalence a much weaker requirement than e. g., regular or str ong str uctural
equivalences.

Weak role equivalencecould have beende“ned using relativ e regular equiv-
alence(seeSection 9.3.4).

Remark 9.5.9. Weak role equivalencesare exactly the equivalenceswhich are
regular relat ive to the complete part itio n. This remark immediately generalizes
to the next threede“nitio ns.

Weak role equivalencecan be tightened in two directions: to include multi-
plexity, which leads to De“ nit ion 9.5.11, or to include composit ion of relations,
which leads to De“ nit ion 9.5.10.

D e“nition 9.5.10. Let G = ( V,E) be a graph, S := S(G) it s semigroup, and �
an equivalence on V. Then � is called a compositio nal equivalenceof G if it is
a weak role equivalence of (V,S) (see De“nition 9.5.8).

Note that in contrast to regular equivalences,where an equivalence is regular
with respect to E if and only if it is regular with respect to S(E), it makes a
di�er ence whether we require � to be a weak role equivalenceof G or of (V,S).
Compositio nal equivalencesare weak role equivalences.
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D e“nition 9.5.11 ([579 ]). Let G = ( V,E) be a graph, C = ( V,M ) := MPX (G)
it s multiplex graph (see De“nition 9.4.6) and � an equivalence on V . Then, �
is called a bundle equivalenceof G if it is a weak role equivalence (see De“ni-
tion 9.5.8) of C.

Bundle equivalencesare weak role equivalences.
Winship-Pattison role equivalenceis most often de“ned in terms of the role-

set of an actor (see[471, p. 79� ]): Two actors are equivalent if they have the
same role-sets (also compare [82, p. 81]). We restate the de“ nit ions given there
in our terminology.

D e“nition 9.5.12. Let G = ( V,E) be a graph. An equivalence relation � on V
is called a local role equivalenceor Winship-Pattison role equivalenceif � is a
bundle equivalence (see De“nition 9.5.11) of the graph (V,S(G)) .

Local role equivalencesare both bundle and compositio nal equivalences.Local
role equivalencesare, in general, not regular, which immediately implies the same
for the thr ee other (weaker) equivalencesde“ned in this section: Let vertices u
and v be connectedby a bidirected edgeand v have an out-going edgeto a third
vertex w. Then u and v are locally role equivalent but not regularly equivalent .

Conclusion. The semigroup of a graph is a possibility to describe the interaction
of multiple and compound relations. An idea to use ident i“ca tion of relations
in order to get role assignments has been sketched. This approach seemsto be
rather hard, both theoretically and computationally.

9.6 Chapt er N ot es

Vert ex part it ions that yield role assignments have “ rst beenintro duced by Lor-
rain and White [394], who de“ned str uctural equivalence.

Sailer [501] pointed out that st ructural equivalenceis to restrictiv e to meet
the intuit ive not ion of social role. He proposedthat actors play the same role if
they are connected to role-equivalent actors (in contr ast to identical actors, as
structural equivalencedemands). His ideaof str uctural relatednesshas beenfor-
malized as regular equivalenceby White and Reitz in the seminal paper [579]. In
this work, they gave a uni“ed treatment of structural, regular, and other equiva-
lencesfor graphs with single or multiple relations. Furthermore, they developed
conditio ns for graph homomorphisms to induce (structural or regular) vertex
part itio ns and to be compatible with the compositio n of relat ions.

Borgatt i and Everett [82, 83, 190, 191] established many propert ies of the set
of regular equivalences,including lattice structure, and developed the algorithm
CATRE GE to compute the maximal regular equivalence of a graph. Further-
more they intr oduced other typesof vertex part itio ns to de“ne roles in graphs.
Boyd and Everett [90] further clari“ed the lattice structure and de“ned relat ive
regular equivalence.

Marx and Masuch [408] commented that regular equivalence is already
known, under the name of bisimulation in computer science.Their report has
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beenthe reasonthat we found the algorithm of Paigeand Tarj an [459], which can
compute the maximal regular equivalenceand is much faster than CATRE GE.

Roberts and Sheng[493] “ rst showed that there are N P -complete problems
stemming from regular role assignments. A more complete t reatment is from
Fiala and Paulusma [209].

Role assignments for graphs with mult iple and composite relat ions are al-
ready treated in [394, 579]. The possibilities to de“ne role assignments in graphs
with multiple relations are abundant . We could sketch only few of them in this
chapter. Addit ional reading is, e.g., K im and Roush [355] and Pat t ison [471]
who found many conditio ns for vertex part itio ns to be compat ible with the com-
position of relations. In the latter book, the algebraic st ructure of semigroups
of relations is presented in detail. Boyd [89] advocated the use of real matrix
multiplica t ion to de“ne semigroups stemming from graphs. Thesesemigroups
often admit sophisticated decompositio ns, which in tur n, inducedecompositio ns
or reductions of the graphs that generated thesesemigroups.

In order to be able to deal with the ir regularities of empirical networks, a for-
malizat ion of roleassignment must …in additio n to choosingthe right compat ibil-
ity cri terion …provide some kind of relaxation. (See Wasserman and Faust [569]
for a more detailed explanation.) Relaxation has not been tr eated in this chap-
ter, which has been focusedon the •ideal• caseof vert ex part it ions that satisfy
strictly the di�er ent compatibilit y constraints. Possibilities to relax structural
equivalence, opt imizational approaches for regular equivalence, and stochastic
methods for role assignments are presented in Chapter 10 about blockmodels.
Brandesand Lerner [97] intr oduced a relaxat ion of equitable part itio ns to pro-
vide a framework for role assignments that are tolerant towards irregulari t ies.
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