Assignment 12

Post Date: 25 Jan 2016 Due Date: 01 Feb 2016, 1 pm
You are permitted and encouraged to work in groups of two.

Problem 1: Intersections of Straight Lines
Consider a given set of \(n \) distinct straight lines in the plane.

(a) How many intersections can there be at most? Prove your statement.

(b) Find a procedure to construct a set of \(n \) straight lines with maximum number of intersections.

(c) How many intersections can there be at most if there are only horizontal or vertical lines? Prove your statement.

Problem 2: Binary Search Tree
You are given a binary search tree \(BST \) that stores a strict total order of natural numbers of size \(n \) with \(V := \{v_1, ..., v_n \in \mathbb{N} \mid \forall i \in [1, n-1] : v_i < v_{i+1}\} \).

Provide an algorithm in pseudocode that returns \(v_{i+1} \) for an arbitrary tree node \(T_i \) solely based on the structure of the \(BST \) (i.e. only using \(= \)-operators, especially no \(<, >, \leq \) or \(\geq \)). Assume self-explanatory pointers \(T.parent, T.left, T.right \) to be given.

Problem 3: Shamos & Hoey

(a) Consider the following extension of the algorithm of Shamos & Hoey:
Whenever the algorithm finds an intersection in line 7 or 9 it does not stop but saves the intersection to a list and continues.
Disprove the following statements:
 i. The list contains all intersections.
 ii. The intersections in the list are ordered by their \(x \)-values.

(b) Expand the algorithm of Shamos & Hoey such that it outputs all intersections according to their appearance on the \(x \)-axis. Assume that no two endpoints are equal and that at most two line segments intersect in one point.
Provide your algorithm in pseudocode and analyze its run time.
Hint: Define a new event-point-type that represents intersections of line segments.