Outline

Introduction
Where are we going?

The Stochastic actor-oriented model
Data and model definition
Model specification
Parameter interpretation
Simulating network evolution
Parameter estimation: MoM and MLE

Extending the model: analyzing the co-evolution of networks and behavior
Motivation
Selection and influence
Model definition and specification
Simulating the co-evolution of networks and behavior
Parameter interpretation
Parameter estimation

Something more on the SAOM

ERGMs and SAOMs

Where we are

<table>
<thead>
<tr>
<th>Model</th>
<th>Main feature</th>
<th>Real data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n,p))</td>
<td>ties are independent</td>
<td>ties dependency</td>
</tr>
<tr>
<td>Planted partition</td>
<td>intra/inter group density</td>
<td>ties dependency</td>
</tr>
<tr>
<td>Preferential attachment</td>
<td>degree distribution</td>
<td>other structural properties</td>
</tr>
<tr>
<td>ERGM</td>
<td>class of models</td>
<td>reasonable representation</td>
</tr>
</tbody>
</table>

These are models for cross-sectional data
Networks are dynamic by nature: a real example

The *Teenage Friends and Lifestyle Study* analyzes smoking behavior and friendship.

Data collection: (available from http://www.stats.ox.ac.uk/~snijders/siena/)
- One school year group monitored over 3 years;
- Questionnaires at approximately one year interval:
 1. Friendship relation: each pupil could name up to 12 friends.
 2. Individual information and lifestyle elements: gender, age, substances use, smoking of parents and siblings etc.

Networks are dynamic by nature. How to model network evolution?

We need a model for longitudinal data.

Networks are dynamic by nature: a real example

Networks are dynamic by nature: a real example

Networks are dynamic by nature: a real example

Networks are dynamic by nature: a real example
Networks are dynamic by nature: a real example

Some questions

Is there any tendency in friendship formation ...
- towards reciprocity?

- towards transitivity?

Is there any homophily in friendship formation with respect to ...
- gender?

- smoking behavior?

Solution

Stochastic actor-oriented model (SAOM)

Aim

Explain network evolution as a result of
- endogenous variables: structural effects depending on the network only (e.g. reciprocity, transitivity, etc.)
- exogenous variables: actor-dependent and dyadic-dependent covariates (e.g. effect of a covariate on the existence of a tie or on homophily)

simultaneously
Definitions

Let Ω, P be a probability space

Ω is a set of possible outcomes

$P : \Omega \to [0, 1]$ is a probability function such that:

1. $P(\omega) \geq 0$
2. $\sum_{\omega \in \Omega} P(\omega) = 1$

A (real-valued) random variable (r.v.) is a function $X : (\Omega, P) \to (\mathbb{R}, P)$.

Example

Given $P(\omega)$ we can compute $P(x)$:

$$P(X = 4) = P((1, 3)) + P((2, 2)) + P((3, 1)) = 1/36 + 1/36 + 1/36 = 1/12$$

N.b.:
- capital letters denote r.v.s (e.g. $X = \text{sum of two dice}$)
- small letters denote the values assumed by a r.v. (e.g. $x = 2$)
- The set of values that X can take is called range and will be denoted by \mathcal{S} (e.g. $\mathcal{S} = \{2, 3, \ldots, 12\}$)
Definition
A r.v. X is defined to be discrete if S is countable.

The probability mass function (p.m.f) $\phi_X(x) : \mathbb{R} \to [0,1]$ describes the values that X can take along with the probability associated with each value x:

<table>
<thead>
<tr>
<th>x</th>
<th>$\phi_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>2/36</td>
</tr>
<tr>
<td>4</td>
<td>3/36</td>
</tr>
<tr>
<td>5</td>
<td>4/36</td>
</tr>
<tr>
<td>6</td>
<td>5/36</td>
</tr>
<tr>
<td>7</td>
<td>6/36</td>
</tr>
<tr>
<td>8</td>
<td>5/36</td>
</tr>
<tr>
<td>9</td>
<td>4/36</td>
</tr>
<tr>
<td>10</td>
<td>3/36</td>
</tr>
<tr>
<td>11</td>
<td>2/36</td>
</tr>
<tr>
<td>12</td>
<td>1/36</td>
</tr>
</tbody>
</table>

Examples
- $X =$ sum of two dice

$P(X \leq 3) = P(X = 2) + P(X = 3) = 1/36 + 2/36 = 1/12$

Background: continuous random variable

Definition
A random variable X is called (absolutely) continuous if S is uncountable and there exists a function $f_X(x) : \mathbb{R} \to \mathbb{R}^+$ such that

$$F_X(x) = P(X \leq x) = \int_{-\infty}^{x} f_X(u) \, du \quad \forall x \in \mathbb{R}$$

$$P(X \in \mathbb{R}) = \int_{-\infty}^{+\infty} f_X(x) \, dx = 1$$

$f_X(x)$ is the probability density function (p.d.f)

Examples
- $X =$ weight of people in a population
- $X =$ waiting time at a post office clerk
- ...
A stochastic process \(\{X(t), t \in \mathcal{T}\} \) is a mapping \(\forall t \in \mathcal{T} \mapsto X(t) : \Omega \rightarrow \mathbb{R} \).

\(\mathcal{T} \) = index set (usually interpreted as time)
\(S \) = state space

Different stochastic processes can be defined according to \(S \) and \(\mathcal{T} \):

<table>
<thead>
<tr>
<th>State Space</th>
<th>Time Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countable (discrete)</td>
<td>(\mathcal{T}) = (finite) discrete-time with finite state space</td>
</tr>
<tr>
<td>Countable (finite)</td>
<td>(\mathcal{T}) = (continuous) continuous-time with continuous state space</td>
</tr>
<tr>
<td>Uncountable (continuous)</td>
<td>(\mathcal{T}) = (continuous) continuous-time with continuous state space</td>
</tr>
</tbody>
</table>

Example

\(X(t) \) = the outcome of flipping a coin
\(S = \{-1, 1\} \), where \(-1 =\text{tail} 1 =\text{head}\)
\(\mathcal{T} = \{1, 2, \cdots\} \)

\(\{X(t), t \in \mathcal{T}\} \) is a discrete-time stochastic process with a finite state space

Example

\(X(t) \) = the number of telephone call at a switchboard of a company from 8 a.m. to 8 p.m.
\(S = \{0, 1, 2, \cdots\} \)
\(\mathcal{T} = [0, 12] \)

\(\{X(t), t \in \mathcal{T}\} \) is a continuous-time stochastic process with a finite state space
Definition

A *continuous-time* Markov chain \(\{X_t, t \geq 0\} \) is a stochastic process having

1. finite state
2. continuous-time
3. the Markovian property

Example

\(X(t) = \# \) of goals that a given soccer player scores by time \(t \) (time played in official matches)

\(\{X(t), t \geq 0\} \) is a continuous-time Markov chains

Why?

1. state space: \(S = \{0,1,2,\ldots, B\} \)

 \(B = \) total number of goals scored during the career

2. the time is continuous: \([0,T]\)

 \(T = \) time of retirement

3. the process \(\{X(t), t \geq 0\} \) has the Markov property
Background: describing a continuous-time Markov chain

Holding time

$T = \text{amount of time the chain spends in state } i \ (\text{Exponential } r.v.)$

$f_T(t) = \lambda_i e^{-\lambda_i t}, \quad \lambda_i > 0, \ t > 0$

$f_T(t) : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$P(T \leq t') = \int_0^{t'} f_T(t) dt = 1 - e^{-\lambda_i t'} \quad \forall t \geq 0$$

The Exponential r.v. has the memoryless property

$$P(T > s + t \mid T > t) = P(T > s) \quad \forall s, t > 0$$

Background: describing a continuous-time Markov chain

Jump chain

$P = (p_{ij} : i, j \in S) = \text{jump matrix}$

$p_{ij} = P(X(t') = j \mid X(t) = i, \ the \ opportunity \ to \ leave \ i)$

$p_{ij} \geq 0 \quad \sum_{j \in S} p_{ij} = 1 \quad \forall i, j \in S$
Background: describing a continuous-time Markov chain

Example

\[P = \begin{bmatrix} 0.1 & 0 & 0.6 & 0.3 \\ 0.8 & 0.1 & 0.1 & 0 \\ 0.05 & 0.5 & 0.05 & 0.4 \\ 0.6 & 0.1 & 0.15 & 0.15 \end{bmatrix} \]

Outline

Introduction

The Stochastic actor-oriented model
- Data and model definition
- Model specification
- Parameter interpretation
- Simulating network evolution
- Parameter estimation: MoM and MLE

Extending the model: analyzing the co-evolution of networks and behavior

Something more on the SAOM

ERGMs and SAOMs

Recall: adjacency matrix and directed relations

Social network: a set of actors \(N \) + a relation \(R \)

Graph = \(G(N, R) \)

Adjacency matrix = \(X \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Directed relation:

\(i \rightarrow j \) \neq \(j \rightarrow i \)

Data

Longitudinal (or panel) network data = \(M \geq 2 \) repeated observations on a network

\[x(t_0), x(t_1), \ldots, x(t_m), \ldots, x(t_{M-1}), x(t_M) \]

- set of actors \(N = \{1, 2, \ldots, n\} \)
- a non reflexive and directed relation \(R \)
- actor covariates \(V \) (gender, age, social status, ...)

\[\begin{align*}
 t_0 & \quad t_1 \\
 t_2 & \quad t_3 \\
 t_4 & \quad t_5 \\
\end{align*} \]
Network evolution is the outcome of a stochastic process specified by the following assumptions:

1. **Ties are state**: a tie is a state with a tendency to endure over time

2. **Distribution of the process**: \(\{X(t), t \in T\} \) is a continuous time Markov Chain defined on:
 - the state space \(X \)
 - the set of actors \(N \)

Finite state space

- \(X \) is the set of all possible adjacency matrices defined on \(N \)
- \(X = 2^{n(n-1)} \Rightarrow X \) is a countable set

Continuous-time process

Latent process: the network evolves in continuous-time but we observed it only at discrete time points

Markov property: the current state of the network determines probabilistically its further evolution
Model definition: assumptions

3. **Opportunity to change**: at any given moment t one actor has the opportunity to change

4. **Absence of co-occurrence**: no more than one tie can change at any given moment t
 (Notation: $x(i \rightarrow j)$ means that actor i changes his outgoing tie towards j)

5. **Actor-oriented perspective**: actors control their outgoing ties
 - change in ties are made by the actor who sends the ties
 - decisions are made according to the position of the actor in the network, his attributes and the characteristics of the others
 - **Aim**: maximize a utility function
 - actors have complete knowledge about the network and all the other actors
 - the maximization is based on immediate returns (myopic actors)
Model definition: assumptions (recap)

1. Ties are states
2. The evolution process is a continuous-time Markov chain
3. At any given moment t one probabilistically selected actor has the opportunity to change
4. No more than one tie can change at any given moment t
5. Actor-oriented perspective

Model definition: rate function

How fast is the opportunity for changing?

Waiting time between opportunities of change for actor $i \sim \text{Exp}(\lambda_i)$

λ_i is called the rate function

Simple specification: all actors have the same rate of change λ

$P(i \text{ has the opportunity of change}) = \frac{1}{n} \quad \forall i \in N$

Model definition: rate function

How fast is the opportunity for changing?

More complex specification

Actors may change their ties at different frequencies $\lambda_i(\alpha, x, v)$

Example

“Young girls might change their ties more frequently”

$\lambda_i(\alpha, x, v) = \alpha_{\text{age}} \cdot v_{\text{age}} + \alpha_{\text{gender}} \cdot v_{\text{gender}}$

It follows

$P(i \text{ has the opportunity of change}) = \frac{\lambda_i(\alpha, x, v)}{\sum_{j=1}^{n} \lambda_j(\alpha, x, v)}$
How fast is the opportunity for changing?

In the following we assume that:

- all actors have the same rate of change
 \[\lambda \text{ is constant over the actors} \]

- the frequencies at which actors have the opportunity to make a change depends on time
 \[\Rightarrow \lambda \text{ is not constant over time} \]

As a consequence, we must specify \(M - 1 \) rate functions

\[\lambda_1, \ldots, \lambda_{M-1} \]

Which tie is changed?

Changing a tie means turning it into its opposite:

- \(x_{ij} = 0 \) is changed into \(x_{ij} = 1 \) tie creation
- \(x_{ij} = 1 \) is changed into \(x_{ij} = 0 \) tie deletion

Given that \(i \) has the opportunity to change:

<table>
<thead>
<tr>
<th>Possible choices of (i)</th>
<th>Possible reachable states</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n - 1) changes</td>
<td>(n - 1) networks (x(i \sim j))</td>
</tr>
<tr>
<td>1 non-change</td>
<td>1 network equal to (x)</td>
</tr>
</tbody>
</table>

Model definition: objective function

Next state \((x') \)

<table>
<thead>
<tr>
<th>Current state (x)</th>
<th>Next state (x')</th>
<th>Transition matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(x(1 \sim 2))</td>
<td>(p_{xx} > 0)</td>
</tr>
<tr>
<td>(2)</td>
<td>(x(1 \sim 3))</td>
<td>(p_{xx} > 0)</td>
</tr>
<tr>
<td>(3)</td>
<td>(x(1 \sim 4))</td>
<td>(p_{xx} > 0)</td>
</tr>
<tr>
<td>(4)</td>
<td>do nothing</td>
<td>(p_{xx} = 0)</td>
</tr>
</tbody>
</table>

Model definition: objective function

Next state \((x') \)

<table>
<thead>
<tr>
<th>Current state (x)</th>
<th>Next state (x')</th>
<th>Transition matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(x(1 \sim 2))</td>
<td>(p_{xx} > 0)</td>
</tr>
<tr>
<td>(2)</td>
<td>(x(1 \sim 3))</td>
<td>(p_{xx} > 0)</td>
</tr>
<tr>
<td>(3)</td>
<td>(x(1 \sim 4))</td>
<td>(p_{xx} > 0)</td>
</tr>
<tr>
<td>(4)</td>
<td>do nothing</td>
<td>(p_{xx} = 0)</td>
</tr>
</tbody>
</table>
Setting:
decision makers who face a choice between N-alternatives

Notation:
- i denotes the decision maker
- $J = \{1, \ldots, j, \ldots, N\}$ choice set
- J is exhaustive and choices are mutually exclusive

Assumption:
the decision makers obtain a certain level of profit from each alternative.
The profit is modeled by the utility function U_{ij}:

$U_{ij} : J \rightarrow \mathbb{R}$

Decision rule: i chooses the alternative j that assures him the highest profit, i.e.

$$j : \max_{j \in J} U_{ij}$$

Background: random utility model

The researcher does not observe the decision maker’s utility, but only:
- $n \times A$ matrix x of attributes of each alternative j (as faced by i)
- $B \times 1$ vector v_i of attributes of i

Since, there are factors that the researcher cannot observe, the utility function is decomposed as

$$U_{ij} = F_{ij}(\beta, \gamma, x_{ij}, v_i) + E_{ij}$$

where:
- F_{ij} is the deterministic part of the utility (observed!)

$$F_{ij}(\beta, \gamma, x_{ij}, v_i) = \sum_2 \beta_a x_{ja} + \sum_B \gamma_b v_{ib}, \; \beta_a, \gamma_b \in \mathbb{R}, x_{ij}$$
- E_{ij}: random term (not observed!)
The random term are independent and identically distributed.

Consequence: The researcher can only “guess” i’s choice

Model definition: objective function

Actors change their ties in order to maximize a utility function

$$u_i(\beta, x(i \sim j)) = f_i(\beta, x(i \sim j), v_i, v_j) + E_{ij}$$

- $f_i(\beta, x(i \sim j), v_i, v_j)$ is the objective function
- E_{ij} is assumed to be distributed as a Gumbel r.v.

Consequence: the probability that i changes his outgoing tie towards j is:

$$p_{ij} = \frac{\exp \left(f_i(\beta, x(i \sim j), v_i, v_j)\right)}{\sum_{h=1}^N \exp \left(f_i(\beta, x(i \sim h), v_i, v_j)\right)}$$

Probabilities interpretation:
- p_{ij} is the probability that i changes the tie towards j
- p_{ii} is the probability of not changing
The objective function is defined as a linear combination

\[f_i(\beta, x(i \sim j), v_i, v_j) = \sum_{k=1}^{K} \beta_k s_{ik}(x(i \sim j), v_i, v_j) \]

- \(s_{ik}(x(i \sim j), v_i, v_j) \) is called effect
- \(\beta_k \in \mathbb{R} \) is a statistical parameter

N.b.
In the following, we will write:
- \(x' \) instead of \(x(i \sim j) \)
- \(s_k(x', v) \) instead of \(s_k(x(i \sim j), v, v_j) \)
to simplify the notation

Objective function specification

Endogenous effects = dependent on the network structures
- Outdegree effect
 \[s_{i,\text{out}}(x') = \sum_j x'_i \]
- Reciprocity effect
 \[s_{i,\text{rec}}(x') = \sum_j x'_i x'_j \]

Endogenous effects = dependent on the network structures
- Transitive effect
 \[s_{i,\text{trans}}(x') = \sum_{j,h} x'_i x'_j x'_h \]
- three cycle-effect
 \[s_{i,\text{cyc}}(x') = \sum_{j,h} x'_i x'_j x'_h \]
Objective function specification

Exogenous effects = related to actor's attributes

Example

- Friendship among pupils:
 - Smoking: non, occasional, regular
 - Gender: boys, girls

- Trade/Trust (Alliances) among countries:
 - Geographical area: Europe, Asia, North-America,...
 - Worlds: First, Second, Third, Fourth

Objective function specification

Exogenous effects (individual covariate)

- covariate-ego

\[
s_{i\text{ego}}(x', v) = \sum_j x'_{ij} v_i
\]

- covariate-alter

\[
s_{i\text{alt}}(x', v) = \sum_j x'_{ij} v_j
\]

Objective function specification

Exogenous effects (dyadic covariate)

- covariate-related similarity

\[
s_{i\text{csim}}(x', v) = \sum_j x'_{ij} \left(1 - \frac{|v_i - v_j|}{R_V}\right)
\]

where \(R_V \) is the range of \(V \) and \(1 - \frac{|v_i - v_j|}{R_V} \) is called similarity score.

Remark:

When \(V \) is a binary covariate, the covariate-related similarity can be written in the following way:

\[
s_{i\text{csim}}(x', v) = \sum_j x'_{ij} \mathbb{1}\{v_i = v_j\}
\]

Objective function specification

Which effects must be included in the objective function?

Outdegree and Reciprocity must always be included. The choice of the other effects must be determined according to hypotheses derived from theory.

Example

Friendship network

<table>
<thead>
<tr>
<th>Theory</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>the friend of my friend is also my friend</td>
<td>transitive effect</td>
</tr>
<tr>
<td>girls trust girls</td>
<td>covariate-related similarity</td>
</tr>
<tr>
<td>boys trust boys</td>
<td>similarity</td>
</tr>
</tbody>
</table>
Parameter interpretation

1. Parameter interpretation: β_k quantifies the role of $s_{ik}(x')$ in the network evolution.
 - $\beta_k = 0$: $s_{ik}(x')$ plays no role in the network dynamics
 - $\beta_k > 0$: higher probability of moving into networks where $s_{ik}(x')$ is higher
 - $\beta_k < 0$: higher probability of moving into networks where $s_{ik}(x')$ is lower

2. The preferences driving the choice of the actors have the same intensities over time

\[\beta_1, \ldots, \beta_K \text{ are constant over time} \]

Parameter interpretation: a very simple model

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate parameter period 1</td>
<td>8.5948</td>
<td>(0.7091)</td>
<td></td>
</tr>
<tr>
<td>Rate parameter period 2</td>
<td>7.2115</td>
<td>(0.5751)</td>
<td></td>
</tr>
<tr>
<td>Other parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outdegree (density)</td>
<td>-2.4147</td>
<td>(0.0387)</td>
<td>-62.3875</td>
</tr>
<tr>
<td>reciprocity</td>
<td>2.7106</td>
<td>(0.0811)</td>
<td>33.4061</td>
</tr>
</tbody>
</table>

Rate parameter: expected frequency, between two consecutive network observations, with which actors get the opportunity to change a network tie

- about 9 opportunities for change in the first period
- about 7 opportunities for change in the second period

The estimated rate parameters will be higher than the observed number of changes per actor (why?)

Parameter interpretation: a very simple model

The procedures for estimating the parameters of the SAOM are implemented in a R library called **RSiena**

(SIENA = Simulation Investigation for Empirical Network Analysis)

The R script “estimation.R” contains the R commands to implement the estimation procedure in R and the folder “tfls.zip” includes the data files.

Example data: an excerpt from the “Teenage Friends and Lifestyle Study” data set:

- Networks: relation = friendship
 actors = 129 pupils present at all three measurement points
- Covariates: gender (1 = Male, 2 = Female)
 smoking behavior (1 = no, 2 = occasional, 3 = regular)
Interpreting the objective function parameters:

The parameter β_k quantifies the role of the effect s_{ik} in the network evolution.

$\beta_k = 0$ s_{ik} plays no role in the network dynamics

$\beta_k > 0$ higher probability of moving into networks where s_{ik} is higher

$\beta_k < 0$ higher probability of moving into networks where s_{ik} is lower

Which β_k are “significantly” different from 0?

E.g. $\beta_{rec} = 0.13$ is “significantly” different from 0?

Hypothesis test:

1. State the hypotheses.
 - The null hypothesis (H_0):
 the observed increase or decrease in the number of network configurations related to a certain effect results purely from chance

 $H_0 : \beta_k = 0$

 - The alternative hypothesis (H_1):
 the observed increase or decrease in the number of network configurations related to a certain effect is influenced by some non-random cause.

 $H_1 : \beta_k \neq 0$

2. Define a decision rule

\[
\left\{ \begin{array}{l}
\left| \frac{\beta_k}{s.e.(\beta_k)} \right| \geq 2 \quad \text{reject } H_0 \\
\left| \frac{\beta_k}{s.e.(\beta_k)} \right| < 2 \quad \text{fail to reject } H_0
\end{array} \right.
\]

Estimates $s.e.$ t-score

<table>
<thead>
<tr>
<th>Rate parameters:</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate parameter period 1</td>
<td>8.5948</td>
<td>0.7091</td>
<td>1.2147</td>
</tr>
<tr>
<td>Rate parameter period 2</td>
<td>7.2115</td>
<td>0.5751</td>
<td>1.2327</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other parameters:</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>outdegree (density)</td>
<td>-2.4147</td>
<td>0.0387</td>
<td>62.3875</td>
</tr>
<tr>
<td>reciprocity</td>
<td>2.7106</td>
<td>0.0811</td>
<td>33.4061</td>
</tr>
</tbody>
</table>

Objective function parameters:

- outdegree parameter: the observed networks have low density
Parameter interpretation: a very simple model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate parameter period 1</td>
<td>8.5948</td>
<td>0.7091</td>
<td></td>
</tr>
<tr>
<td>Rate parameter period 2</td>
<td>7.2115</td>
<td>0.5751</td>
<td></td>
</tr>
<tr>
<td>Other parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outdegree (density)</td>
<td>-2.4147</td>
<td>0.0387</td>
<td>-62.3875</td>
</tr>
<tr>
<td>reciprocity</td>
<td>2.7106</td>
<td>0.0811</td>
<td>33.4061</td>
</tr>
</tbody>
</table>

Objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties

Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- friendship relations tend to be reciprocated → reciprocity effect
- the statement “the friend of my friend is also my friend” is almost always true → transitive triplets effect

Parameter interpretation: a very simple model

In more detail

\[
\beta_{\text{out}} \sum_{j=1}^{n} x_{ij} + \beta_{\text{rec}} \sum_{j=1}^{n} x_{ij} x_{ji} = -2.4147 \sum_{j=1}^{n} x_{ij} + 2.7106 \sum_{j=1}^{n} x_{ij} x_{ji}
\]

Adding a reciprocated tie (i.e., for which \(x_{ji} = 1\)) gives

\[-2.4147 + 2.7106 = 0.2959\]

while adding a non-reciprocated tie (i.e., for which \(x_{ji} = 0\)) gives

\[-2.4147\]

Conclusion: reciprocated ties are valued positively and non-reciprocated ties are valued negatively by actors

Parameter interpretation: a more complex model

Specifying the objective function

In friendship context, sociological theory suggests that:
- pupils prefer to establish friendship relations with others that are similar to themselves → covariate similarity
- Covariate ego effect
- Covariate alter effect

This effect must be controlled for the sender and receiver effects of the covariate.
Parameter interpretation: a more complex model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate parameter period 1</td>
<td>10.6809</td>
<td>1.0425</td>
<td></td>
</tr>
<tr>
<td>Rate parameter period 2</td>
<td>9.0116</td>
<td>0.8386</td>
<td></td>
</tr>
<tr>
<td>Other parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outdegree (density)</td>
<td>-2.8597</td>
<td>0.0608</td>
<td>-47.0288</td>
</tr>
<tr>
<td>reciprocity</td>
<td>1.9855</td>
<td>0.0876</td>
<td>22.6765</td>
</tr>
<tr>
<td>transitive triplets</td>
<td>0.4480</td>
<td>0.0257</td>
<td>17.4558</td>
</tr>
<tr>
<td>sex alter</td>
<td>-0.1513</td>
<td>0.0980</td>
<td>-1.5445</td>
</tr>
<tr>
<td>sex ego</td>
<td>0.1571</td>
<td>0.1072</td>
<td>1.4659</td>
</tr>
<tr>
<td>sex similarity</td>
<td>0.9191</td>
<td>0.1076</td>
<td>8.5440</td>
</tr>
<tr>
<td>smoke alter</td>
<td>0.1055</td>
<td>0.0577</td>
<td>1.8272</td>
</tr>
<tr>
<td>smoke ego</td>
<td>0.0714</td>
<td>0.0623</td>
<td>1.1469</td>
</tr>
<tr>
<td>smoke similarity</td>
<td>0.3724</td>
<td>0.1177</td>
<td>3.1647</td>
</tr>
</tbody>
</table>

- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties
- transitivity parameter: preference for being friends with friends’ friends

Conclusions: Preference for intra-gender relationships.
Parameter interpretation: a more complex model

<table>
<thead>
<tr>
<th>Parameter interpretation: a more complex model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimates</td>
</tr>
<tr>
<td>Rate parameters:</td>
</tr>
<tr>
<td>Rate parameter period 1</td>
</tr>
<tr>
<td>Rate parameter period 2</td>
</tr>
<tr>
<td>Other parameters:</td>
</tr>
<tr>
<td>outdegree (density)</td>
</tr>
<tr>
<td>reciprocity</td>
</tr>
<tr>
<td>transitive triplets</td>
</tr>
<tr>
<td>sex alter</td>
</tr>
<tr>
<td>sex ego</td>
</tr>
<tr>
<td>sex similarity</td>
</tr>
<tr>
<td>smoke alter</td>
</tr>
<tr>
<td>smoke ego</td>
</tr>
<tr>
<td>smoke similarity</td>
</tr>
</tbody>
</table>

- smoke alter: smoking behavior does not affect actor popularity
- smoke ego: smoking behavior not affect actor activity
- smoke similarity: tendency to choose friends with the same smoking behavior

Parameter interpretation: a more complex model

Simulating network evolution

Aim: given \(x(t_0)\) and fixed parameter values, provide \(x^{sim}(t_1)\) according to the process behind the SAOM

\[\downarrow\]

reproduce a possible series of micro-steps between \(t_0\) and \(t_1\)

Input

- \(n\) = number of actors
- \(\lambda\) = rate parameter (given)
- \(\beta = (\beta_1, \ldots, \beta_k)\) = objective function parameters (given)
- \(x(t_0)\) = network at time \(t_0\) (given)

Output

- \(x^{sim}(t_1)\) = network at time \(t_1\)

Table: Smoking-related contributions to the objective function

<table>
<thead>
<tr>
<th></th>
<th>no</th>
<th>occasional</th>
<th>regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0.0414</td>
<td>-0.0734</td>
<td>-0.1882</td>
</tr>
<tr>
<td>occasional</td>
<td>-0.0393</td>
<td>0.2183</td>
<td>0.1035</td>
</tr>
<tr>
<td>regular</td>
<td>-0.1200</td>
<td>0.1376</td>
<td>0.3952</td>
</tr>
</tbody>
</table>

Conclusions:

- preference for similar alters
- this tendency is strongest for high values on smoking behavior
Simulating network evolution

Algorithm 1: Network evolution

Input: $x(t_0), \lambda, \beta, n$
Output: $x^{\text{sim}}(t_1)$

$t \leftarrow 0$
$x \leftarrow x(t_0)$

while condition = TRUE do
 $dt \sim \text{Exp}(\lambda)$
 $i \sim \text{Uniform}(1, \ldots, n)$
 $j \sim \text{Multinomial}(p_{i1}, \ldots, p_{in})$
 if $i \neq j$ then
 $x \leftarrow x(i \sim j)$
 else
 $x \leftarrow x$
 $t \leftarrow t + dt$
$x^{\text{sim}}(t_1) \leftarrow x$
return $x^{\text{sim}}(t_1)$

$t = \text{time}$
$dt = \text{holding time between consecutive opportunities to change}$
$\sim = \text{generated from}$

$n = 4$
$\lambda = 1.5$
$\beta = (\beta_{\text{out}}, \beta_{\text{rec}}, \beta_{\text{trans}}) = (-1.05, -0.25)$

Generate the time elapsed between t_0 and the first opportunity to change

Select the actor i who has the opportunity to change

e.g. $i = 1$
Simulating network evolution

Algorithm 1: Network evolution
Input: $x(t_0), \lambda, \beta, n$
Output: $x_{\text{sim}}(t_1)$

$t \leftarrow 0$
$x \leftarrow x(t_0)$

while condition = TRUE do
 $dt \sim \text{Exp}(n\lambda)$
 $i \sim \text{Uniform}(1, \ldots, n)$
 $j \sim \text{Multinomial}(p_1, \ldots, p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \sim j)$
 else
 $x \leftarrow x$
 $t \leftarrow t + dt$
$x_{\text{sim}}(t_1) \leftarrow x$
return $x_{\text{sim}}(t_1)$

$t = \text{time}$
$dt = \text{holding time between consecutive opportunities to change}$
$\sim = \text{generated from}$

Select j, the actor towards i is going to change his outgoing tie

<table>
<thead>
<tr>
<th>$i \rightarrow j$</th>
<th>f_i</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \rightarrow 1</td>
<td>-1.75</td>
<td>0.15</td>
</tr>
<tr>
<td>1 \rightarrow 2</td>
<td>-1.00</td>
<td>0.31</td>
</tr>
<tr>
<td>1 \rightarrow 3</td>
<td>-3.25</td>
<td>0.03</td>
</tr>
<tr>
<td>1 \rightarrow 4</td>
<td>-0.5</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Simulating network evolution

Algorithm 1: Network evolution
Input: $x(t_0), \lambda, \beta, n$
Output: $x_{\text{sim}}(t_1)$

$t \leftarrow 0$
$x \leftarrow x(t_0)$

while condition = TRUE do
 $dt \sim \text{Exp}(n\lambda)$
 $i \sim \text{Uniform}(1, \ldots, n)$
 $j \sim \text{Multinomial}(p_1, \ldots, p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \sim j)$
 else
 $x \leftarrow x$
 $t \leftarrow t + dt$
$x_{\text{sim}}(t_1) \leftarrow x$
return $x_{\text{sim}}(t_1)$

$t = \text{time}$
$dt = \text{holding time between consecutive opportunities to change}$
$\sim = \text{generated from}$

Simulating network evolution

Algorithm 1: Network evolution
Input: $x(t_0), \lambda, \beta, n$
Output: $x_{\text{sim}}(t_1)$

$t \leftarrow 0$
$x \leftarrow x(t_0)$

while condition = TRUE do
 $dt \sim \text{Exp}(n\lambda)$
 $i \sim \text{Uniform}(1, \ldots, n)$
 $j \sim \text{Multinomial}(p_1, \ldots, p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \sim j)$
 else
 $x \leftarrow x$
 $t \leftarrow t + dt$
$x_{\text{sim}}(t_1) \leftarrow x$
return $x_{\text{sim}}(t_1)$

$t = \text{time}$
$dt = \text{holding time between consecutive opportunities to change}$
$\sim = \text{generated from}$

Simulating network evolution

Algorithm 1: Network evolution
Input: $x(t_0), \lambda, \beta, n$
Output: $x_{\text{sim}}(t_1)$

$t \leftarrow 0$
$x \leftarrow x(t_0)$

while condition = TRUE do
 $dt \sim \text{Exp}(n\lambda)$
 $i \sim \text{Uniform}(1, \ldots, n)$
 $j \sim \text{Multinomial}(p_1, \ldots, p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \sim j)$
 else
 $x \leftarrow x$
 $t \leftarrow t + dt$
$x_{\text{sim}}(t_1) \leftarrow x$
return $x_{\text{sim}}(t_1)$

$t = \text{time}$
$dt = \text{holding time between consecutive opportunities to change}$
$\sim = \text{generated from}$

Simulating network evolution

Algorithm 1: Network evolution
Input: $x(t_0), \lambda, \beta, n$
Output: $x_{\text{sim}}(t_1)$

$t \leftarrow 0$
$x \leftarrow x(t_0)$

while condition = TRUE do
 $dt \sim \text{Exp}(n\lambda)$
 $i \sim \text{Uniform}(1, \ldots, n)$
 $j \sim \text{Multinomial}(p_1, \ldots, p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \sim j)$
 else
 $x \leftarrow x$
 $t \leftarrow t + dt$
$x_{\text{sim}}(t_1) \leftarrow x$
return $x_{\text{sim}}(t_1)$

$t = \text{time}$
$dt = \text{holding time between consecutive opportunities to change}$
$\sim = \text{generated from}$
Simulating network evolution

Two different stopping rules:

1. **Unconditional** simulation:
 The simulation of the network evolution carries on until a predetermined time length has elapsed (usually until $t = 1$).

2. **Conditional** simulation on the observed number of changes:
 Simulation runs on until
 \[
 \sum_{i,j=1, i\neq j}^{n} |x_{ij}(t_1) - x_{ij}(t_0)| = \sum_{i,j=1, i\neq j}^{n} |x_{ij}^\text{sim}(t_1) - x_{ij}(t_0)|
 \]
 This criterion can be generalized conditioning on any other explanatory variable.

Estimating the parameter of the SAOM

Problem

Given the longitudinal network data
\[x(t_0), x(t_1), \ldots, x(t_M) \]
and a parametrization of the SAOM
\[\theta = (\lambda_1, \ldots, \lambda_M, \beta_1, \ldots, \beta_K) \]
we want to estimate θ in a plausible way.

Solution

Different estimation methods are available:

1. Method of Moments (MoM)
2. Maximum Likelihood Estimation (MLE)

Use of simulations:

- simulating the network evolution between two consecutive time points

 N.b. For simulations of 3 or more waves ($M \geq 2$), the simulations for wave $m+1$ start at the simulated network for wave m.

- provide possible scenarios of the network evolution according to different values of the parameters of the SAOM

- estimate the parameters of the SAOM

- evaluate the goodness of fit of the model

Background: Method of Moments (MoM)

Definition

Let X be a random variable with probability distribution depending on a parameter θ.
Let (x_1, \ldots, x_q) a sample of q observations from the r.v. X.

The expected value (mean or moment) of X, denoted by $E_\theta[X]$, is defined by:
\[E_\theta[X] = \sum_{x \in \mathcal{X}} x \cdot \varphi(x, \theta) \]
if X is discrete with p.m.f $\varphi(x, \theta)$ and
\[E_\theta[X] = \int_{x \in \mathcal{X}} x \cdot f(x, \theta) \, dx \]
if X is continuous with p.d.f $f(x, \theta)$

The sample counterpart of $E_\theta[X]$, denoted by μ, is defined by:
\[\mu = \frac{1}{q} \sum_{i=1}^{q} x_i \]
Definition

The method of moment estimator for θ is found by equating the expected value $E_\theta[X]$ to its sample counterpart μ

$$E_\theta[X] = \mu$$

and solving the resulting equation for the unknown parameter. The estimate for θ is denoted by $\hat{\theta}$.

In practice:
1. Compute the expected value $E_\theta[X]$
2. Compute the sample counterpart $\mu = \frac{1}{q} \sum_{i=1}^{q} x_i$
3. Solve the moment equation $E_\theta[X] = \mu$ for θ

Motivation

One can observe that the expected value of a certain distribution usually depends on the parameter θ

Example

Let W be the r.v. describing the waiting times between two consecutive opportunities for change for an actor in a network evolution process described by the SAOM.

A sample is reported in the following table:

<table>
<thead>
<tr>
<th>w_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.11</td>
<td>0.03</td>
<td>0.18</td>
<td>0.02</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

Estimate the rate parameter λ according to the MoM.

From the assumptions of the SAOM follows that $W \sim \text{Exp}(\lambda)$

$$f_W(w) = \lambda e^{-\lambda w}, \quad \lambda, w > 0$$

1. The expected value of W is:

$$E_\lambda[W] = \int_0^{+\infty} w \cdot f_W(w) \, dw = \int_0^{+\infty} w \cdot \lambda e^{-\lambda w} \, dw$$

$$= \left[-w \cdot e^{-\lambda w}\right]_0^{+\infty} - \left[-e^{-\lambda w}\right]_0^{+\infty}$$

Integration by parts

$$= 0 - \left[-\frac{1}{\lambda} e^{-\lambda w}\right]_0^{+\infty} = \frac{1}{\lambda}$$

2. The sample counterpart is:

$$\mu = \frac{1}{10} \sum_{i=1}^{10} w_i = \frac{0.93}{10} = 0.093$$

3. The estimate for λ is the solution of:

$$E_\lambda[W] = \mu$$

$$\frac{1}{\lambda} = \mu$$

namely

$$\hat{\lambda} = \frac{1}{\mu} = \frac{1}{0.093} = 10.75$$
The principle of the MoM can be easily generalized to any function $s: S \rightarrow \mathbb{R}$.

1. Expected value of $s(X)$:
 \[
 E_\theta[s(X)] = \sum_{x \in S} s(x) \varphi(x, \theta)
 \]

2. Corresponding sample moment:
 \[
 \gamma = \frac{1}{q} \sum_{i=1}^{q} s(x_i)
 \]

3. Moment equation:
 \[
 E_\theta[s(X)] = \gamma
 \]

The functions $s(X)$ are called statistics.

Estimating the parameter of the SAOM using MoM

Aim: estimate θ using the MoM

\[
\theta = (\lambda_1, \ldots, \lambda_M, \beta_1, \ldots, \beta_K)
\]

In practice:

1. find $M + K$ statistics
2. set the theoretical expected value of each statistic equal to its sample counterpart
3. solve the resulting system of equations with respect to θ.

For simplicity, let us assume to have observed a network at two time points t_0 and t_1 and to condition the estimation on the first observation $x(t_0)$.

1. **Defining the statistics**

 The rate parameter λ describes the frequency at which changes can potentially happen.

 \[
 s_\lambda(X(t_1), X(t_0) | X(t_0) = x(t_0)) = \sum_{i,j=1}^{n} |X_{ij}(t_1) - X_{ij}(t_0)|
 \]

 Reason

<table>
<thead>
<tr>
<th>λ</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_λ</td>
<td>94</td>
<td>135</td>
<td>171</td>
</tr>
</tbody>
</table>

 \Rightarrow higher values of λ leads to higher values of s_λ.
1. Defining the statistics

The parameter β_k quantifies the role played by each effect in the network evolution.

$$ s_k(X(t_1)|X(t_0) = x(t_0)) = \sum_{i=1}^{n} s_{ik}(X(t_1)) $$

Example

Let us consider the outdegree:

$$ s_{\text{out}}(X(t_1)|X(t_0) = x(t_0)) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}(t_1) $$

<table>
<thead>
<tr>
<th>β_{out}</th>
<th>195</th>
<th>214</th>
<th>234</th>
</tr>
</thead>
</table>

\Rightarrow higher values of β_{out} leads to higher values of s_{out}

2. Setting the moment equations

The MoM estimator for θ is defined as the solution of the system of $M + K$ equations

$$ E_\theta \left[s_{\lambda_m}(X(t_m), X(t_{m-1})|X(t_{m-1}) = x(t_{m-1})) \right] = s_{\lambda_m}(x(t_m), x(t_{m-1})) $$

$$ E_\theta \left[\sum_{m=1}^{M} s_{mk}(X(t_m)|X(t_{m-1}) = x(t_{m-1})) \right] = \sum_{m=1}^{M} s_{mk}(x(t_m)) $$

with $m = 1, \ldots, M$ and $k = 1, \ldots, K$

1. Defining the statistics

Generalizing to M periods:

- Statistics for the rate function parameters

$$ s_{\lambda_m}(X(t_1), X(t_0)|X(t_0) = x(t_0)) = \sum_{i=1}^{n} \left| X_{ij}(t_1) - X_{ij}(t_0) \right| $$

$$ \ldots $$

$$ s_{\lambda_M}(X(t_M), X(t_{M-1})|X(t_{M-1}) = x(t_{M-1})) = \sum_{i=1}^{n} \left| X_{ij}(t_M) - X_{ij}(t_{M-1}) \right| $$

- Statistics for the objective function parameters:

$$ \sum_{m=1}^{M} s_{mk}(X(t_m)|X(t_{m-1}) = x(t_{m-1})) = \sum_{m=1}^{M} s_{mk}(X(t_m)) $$

2. Setting the moment equations

Example

Let us assume to have observed a network at two time points

We want to model the network evolution according to the outdegree, the reciprocity and the transitivity effects

$$ \theta = (\lambda, \beta_{\text{out}}, \beta_{\text{rec}}, \beta_{\text{trans}}) $$
2. Setting the moment equations

Example
Statistics:

\[s_\lambda(X(t_1), X(t_0)|X(t_0) = x(t_0)) = \sum_{i,j=1}^{4} |X_{ij}(t_1) - X_{ij}(t_0)| \]

\[s_{out}(X(t_1)|X(t_0) = x(t_0)) = \sum_{i,j=1}^{4} X_{ij}(t_1) \]

\[s_{rec}(X(t_1)|X(t_0) = x(t_0)) = \sum_{i,j=1}^{4} X_{ij}(t_1)X_{ji}(t_1) \]

\[s_{trans}(X(t_1)|X(t_0) = x(t_0)) = \sum_{i,j,h=1}^{4} X_{ij}(t_1)X_{ih}(t_1)X_{jh}(t_1) \]

2. Setting the moment equations

Example

We look for the value of θ that satisfies the system:

\[\begin{cases} E_\theta [s_\lambda(X(t_1), X(t_0)|X(t_0) = x(t_0))] = 5 \\ E_\theta [s_{out}(X(t_1)|X(t_0) = x(t_0))] = 6 \\ E_\theta [s_{rec}(X(t_1)|X(t_0) = x(t_0))] = 4 \\ E_\theta [s_{trans}(X(t_1)|X(t_0) = x(t_0))] = 2 \end{cases} \]

3. Solving the moment equations

Simplified notation:

- \(S \): \((M + K)\)-dimensional vector of statistics
- \(s \): \((M + K)\)-dimensional vector of the observed values of the statistics

Consequently, the system of moment equations can be written as

\[E_\theta[S] = s \]

or equivalently as

\[E_\theta[S - s] = 0 \]

Problem: analytical procedures cannot be applied to solve this system

Solution: stochastic approximation method
i.e. an iterative stochastic algorithm that attempt to find zeros of functions which cannot be analytically computed.
3. Solving the moment equations: stochastic approximation method

Given an initial guess θ_0 for the parameter θ, the procedure can be roughly depicted as follows:

$$
\begin{align*}
\theta_0 & \quad \text{approximation} \quad E_{\theta_0}[S - s] \quad \text{update} \quad \theta_1 \\
\theta_1 & \quad \text{approximation} \quad E_{\theta_1}[S - s] \quad \text{update} \quad \theta_2 \\
\vdots & \quad \text{approximation} \quad \vdots \quad \text{update} \quad \vdots \\
\theta_{i-1} & \quad \text{approximation} \quad E_{\theta_{i-1}}[S - s] \quad \text{update} \quad \theta_i \\
\vdots & \quad \text{approximation} \quad \vdots \quad \text{update} \quad \vdots
\end{align*}
$$

until a certain criterion is satisfied

Example

- Guess $\theta_0 = (7.45, 6.83, -1.61, 0, 0)$
- Simulate the network evolution 1000 times according to θ_0
- Approximation of the expected values
 $\mathbb{E}_{\lambda_1} = 605.746$ $\mathbb{E}_{\lambda_2} = 573.715$
 $\mathbb{E}_{\beta_{\text{rec}}} = 1151.886$ $\mathbb{E}_{\beta_{\text{trans}}} = 141.406$
 $\mathbb{E}_{\beta_{\text{trans}}} = 270.118$
- Approximation of the moment equation
 $\mathbb{S}_{\lambda_1} - 477 = 128.745$ $\mathbb{S}_{\lambda_2} - 437 = 136.715$
 $\mathbb{S}_{\beta_{\text{rec}}} - 909 = 242.886$ $\mathbb{S}_{\beta_{\text{rec}}} - 548 = -406.594$
 $\mathbb{S}_{\beta_{\text{trans}}} - 1146 = -875.882$

Example

- Guess $\theta_1 = (7.1, 6.75, -1.70, 1.20, 0.25)$
- Simulate the network evolution 1000 times according to θ_1
- Approximation of the expected values
 $\mathbb{E}_{\lambda_1} = 549.787$ $\mathbb{E}_{\lambda_2} = 532.551$
 $\mathbb{E}_{\beta_{\text{rec}}} = 1478.988$ $\mathbb{E}_{\beta_{\text{rec}}} = 517.450$
 $\mathbb{E}_{\beta_{\text{trans}}} = 1062.537$
- Approximation of the moment equation
 $\mathbb{S}_{\lambda_1} - 477 = 72.787$ $\mathbb{S}_{\lambda_2} - 437 = 95.551$
 $\mathbb{S}_{\beta_{\text{rec}}} - 909 = 569.988$ $\mathbb{S}_{\beta_{\text{rec}}} - 548 = -30.550$
 $\mathbb{S}_{\beta_{\text{trans}}} - 1146 = -83.463$
3. Solving the moment equations: stochastic approximation method

Example
- Guess $\theta_2 = (7.10, 6.75, -2.20, 1.40, 0.35)$
- Simulate the network evolution 1000 times according to θ_2
- Approximation of the expected values
 $\mathbb{E}_{\lambda_1} = 446.853$ $\mathbb{E}_{\lambda_2} = 437.166$
 $\mathbb{E}_{\beta_{\text{rec}}} = 414.484$ $\mathbb{E}_{\beta_{\text{trans}}} = 698.734$
- Approximation of the moment equation
 $\mathbb{E}_{\lambda_1} - 477 = -30.147$ $\mathbb{E}_{\lambda_2} - 437 = 0.166$
 $\mathbb{E}_{\beta_{\text{rec}}} - 909 = 116.729$ $\mathbb{E}_{\beta_{\text{trans}}} - 1146 = -447.266$
and so on...

3. Solving the moment equations: stochastic approximation method

1. Approximation

Definition
Let X be a random variable with distribution function $f_X(x)$. The Monte Carlo method consists in:
1. generating a sample (x_1, \ldots, x_q) from the distribution function $f_X(x)$
2. computing $s(x_l)$, $l = 1, \ldots, q$
3. approximating the expected value with the empirical average, i.e.:
 $$\mathbb{E} = \frac{1}{q} \sum_{l=1}^{q} s(x_l)$$

Reason
It can be proved that
$$\mathbb{E} \rightarrow E[s(X)]$$
as $q \rightarrow \infty$

3. Solving the moment equations: stochastic approximation method

Example
- Guess $\theta_1 = (10.71, 8.79, -2.63, 2.16, 0.46)$
- Simulate the network evolution 1000 times according to θ_1
- Approximation of the expected values
 $\mathbb{E}_{\lambda_1} = 476.022$ $\mathbb{E}_{\lambda_2} = 436.983$
 $\mathbb{E}_{\beta_{\text{out}}} = 906.809$ $\mathbb{E}_{\beta_{\text{rec}}} = 545.578$ $\mathbb{E}_{\beta_{\text{trans}}} = 1147.795$
- Approximation of the moment equation
 $\mathbb{E}_{\lambda_1} - 477 = -0.978$ $\mathbb{E}_{\lambda_2} - 437 = -0.017$
 $\mathbb{E}_{\beta_{\text{out}}} - 909 = -2.191$ $\mathbb{E}_{\beta_{\text{rec}}} - 548 = -2.422$ $\mathbb{E}_{\beta_{\text{trans}}} - 1146 = 1.795$
3. Solving the moment equations: stochastic approximation method

1. Approximation

Example
Approximating $E_{\theta}[s_{\text{out}}(X(t_1)\mid X(t_0) = x(t_0))]$ for the "Teenage Friends and Lifestyle Study" data set.

1. Given:
- $x(t_0)$
- $\theta = (\lambda_1 = 10.69, \lambda_2 = 8.82, \beta_{\text{out}} = -2.63, \beta_{\text{rec}} = 2.17, \beta_{\text{trans}} = 0.46)$

simulate the network evolution $q = 1000$ times

$x^{(1)}(t_1), x^{(1)}(t_2), \ldots, x^{(1)}(t_M)$

$x^{(q)}(t_1), x^{(q)}(t_2), \ldots, x^{(q)}(t_M)$

3. Solving the moment equations: stochastic approximation method

1. Approximation

Example
Approximating $E_{\theta}[s_{\text{out}}(X(t_1)\mid X(t_0) = x(t_0))]$ for the “Teenage Friends and Lifestyle Study” data set.

1. Given:
- $x(t_0)$
- $\theta = (\lambda_1 = 10.69, \lambda_2 = 8.82, \beta_{\text{out}} = -2.63, \beta_{\text{rec}} = 2.17, \beta_{\text{trans}} = 0.46)$

simulate the network evolution $q = 1000$ times

$x^{(1)}(t_1), x^{(1)}(t_2), \ldots, x^{(1)}(t_M)$

$x^{(q)}(t_1), x^{(q)}(t_2), \ldots, x^{(q)}(t_M)$

3. Solving the moment equations: stochastic approximation method

2. Updating rule

The (modified) Robbins-Monro (RM) algorithm
Iterative algorithm to find the solution to $E_{\theta}[S] = s$

The value of θ is iteratively updated according to:

$\tilde{\theta}_{i+1} = \tilde{\theta}_i - a_i \tilde{D}^{-1} \left(E_{\tilde{\theta}_i}[S] - s \right)$

where:
- a_i is a series such that
 \[\lim_{i \to \infty} a_i = 0 \quad \sum_{i=1}^{\infty} a_i = \infty \quad \sum_{i=1}^{\infty} a_i^2 < \infty \]
- \tilde{D} is a diagonal matrix with elements
 \[\tilde{D} = \frac{\partial}{\partial \tilde{\theta}_i} E_{\tilde{\theta}_i}[S] \]
3. Solving the moment equations: stochastic approximation method

2. Updating rule

\[\hat{\theta}_{i+1} = \hat{\theta}_i - a_i \tilde{D}^{-1} \left(E_{\hat{\theta}_i} [S] - s \right) \]

Intuitively:
Estimating the parameter of the SAOM

Issue

Given

\[x(t_0), x(t_1), \ldots, x(t_M) \]

and a parametrization of the SAOM

\[\theta = (\lambda_1, \ldots, \lambda_{M-1}, \beta_1, \ldots, \beta_K) \]

we want to estimate \(\theta \) in a plausible way.

Different estimation methods are available:

1. **Method of Moments**:

 an estimation for \(\theta \) is the value \(\hat{\theta} \) that solves:

 \[E_\theta [S - s] = 0 \]

2. **Maximum-likelihood estimation**:

 what is the most likely value of \(\theta \) that could have generated the observed data?

Background: the Maximum-likelihood estimation (MLE)

Definition

Suppose that \(X \) is a r.v. with p.m.f \(\varphi(x, \theta) \), if \(X \) is discrete, or with p.d.f. \(f(x, \theta) \), if \(X \) is continuous, where \(\theta \in \Theta \subset \mathbb{R}^k \). Let \(x = (x_1, x_2, \ldots, x_q) \) be the observed value of a random sample of size \(q \).

The **likelihood function** associated with the observed data is:

\[L(\theta) : \Theta \to \mathbb{R}; \quad \theta \mapsto P_\theta(x_1, \ldots, x_q) \]

defined as:

\[
L(\theta) = \prod_{i=1}^{q} \varphi(x_i, \theta) \quad \text{if } X \text{ is discrete}
\]

\[
L(\theta) = \prod_{i=1}^{q} f(x_i, \theta) \quad \text{if } X \text{ is continuous}
\]

A parameter vector \(\hat{\theta} \) maximizing \(L \):

\[\hat{\theta} = \arg \max_{\theta \in \Theta} L(\theta) \]

is called a **maximum likelihood estimate** for \(\theta \)

Example

Let \(W \) be the r.v. describing the waiting times between two consecutive opportunities for change for an actor in a network evolution process described by the SAOM.

A sample is reported in the following table:

<table>
<thead>
<tr>
<th>(w_i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.33</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.11</td>
<td>0.03</td>
<td>0.18</td>
<td>0.02</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Estimate the rate parameter \(\lambda \) according to the MLE.

From the assumptions of the SAOM follows that \(W \sim \text{Exp}(\lambda) \)

\[f_W(w; \lambda) = \lambda e^{-\lambda w} \quad \lambda, w > 0 \]

In practice, it is easier to compute \(\hat{\theta} \) using the **log-likelihood function**, i.e. \(\log(L(\theta)) \)

\[\hat{\theta} = \arg \max_{\theta \in \Theta} \log(L(\theta)) \]

N.b.

The logarithm is a monotonic increasing function.
Example
Finding an estimate for θ requires:
1. computing the (log-)likelihood of the evolution process
2. maximizing the (log-)likelihood

1. Computing the likelihood of the evolution process

$$L(\lambda) = \prod_{i=1}^{q} f_{W(i)}(\lambda) = \prod_{i=1}^{q} \lambda e^{-\lambda w_i} = \lambda^q e^{-\lambda \sum_{i=1}^{q} w_i}$$

$$\log(L(\lambda)) = \log \left(\lambda^q e^{-\lambda \sum_{i=1}^{q} w_i} \right) = q \cdot \log(\lambda) - \lambda \sum_{i=1}^{q} w_i$$

Estimating the parameter of the SAOM using MLE

Let
- $\mathcal{F} = \{F(\theta), \theta \in \Theta \subseteq \mathbb{R}^k\}$ be a collection of SAOMs parametrized by $\theta \in \Theta \subseteq \mathbb{R}^k$
- $x(t_0), \ldots, x(t_M)$ be the observed network data
- V_1, \ldots, V_H be the observed actor attributes

The likelihood function associated with the observed data is:

$$L: \Theta \rightarrow \mathbb{R}; \quad \theta \mapsto P_\theta(x(t_0), \ldots, x(t_M))$$

Background: the Maximum-likelihood estimation (MLE)

Example
Finding an estimate for θ requires:
1. computing the (log-)likelihood of the evolution process
2. maximizing the (log-)likelihood

2. Maximizing the (log-)likelihood

$$\frac{\partial}{\partial \lambda} \log(L(\lambda)) = 0$$

$$\frac{q}{\lambda} - \sum_{i=1}^{q} w_i = 0$$

$$\lambda = \frac{q}{\sum_{i=1}^{q} w_i} \quad \text{(stationary point)}$$

Checking that this stationary point is a maximum

$$\frac{\partial^2}{\partial \lambda^2} \log(L(\lambda)) = -\frac{q}{\lambda^2} < 0$$

Therefore, $\lambda = 10.75$

1. Computing the (log-)likelihood of the evolution process

For simplicity, let us consider only two observations $x(t_0)$ and $x(t_1)$

The model assumptions allow to decompose the process in a series of micro-steps:

$$\{(T_r, i_r, j_r), r = 1, \ldots, R\}$$

- T_r: time point for an opportunity for change
 $$t_0 < T_1 < \ldots < T_R < t_1$$
- i_r: actor who has the opportunity to change
- j_r: actor towards whom the tie is changed

Given the sequence $\{(T_r, i_r, j_r), r = 1, \ldots, R\}$, the likelihood of the evolution process

$$\log L(\theta) = \log \left(\prod_{r=1}^{R} P_\theta((T_r, i_r, j_r)) \right) \propto \log \left(\frac{(n\lambda)^R}{R!} e^{-n\lambda} \prod_{r=1}^{R} \frac{1}{n} p_{i_r j_r}(\beta, x(T_r)) \right)$$
2. Maximizing the (log-)likelihood

Example

Let us consider the “Teenage Friends and Lifestyle Study” data set.

We model the network evolution according to the following parameter
\[\theta = (\lambda_1, \lambda_2, \beta_{\text{out}}, \beta_{\text{rec}}, \beta_{\text{trans}}) \]

We look for \[\hat{\theta} \] such that:

\[
\begin{align*}
\frac{\partial}{\partial \lambda_1} \log(L(\theta)) &= 0 \\
\frac{\partial}{\partial \lambda_2} \log(L(\theta)) &= 0 \\
\frac{\partial}{\partial \beta_{\text{out}}} \log(L(\theta)) &= 0 \\
\frac{\partial}{\partial \beta_{\text{rec}}} \log(L(\theta)) &= 0 \\
\frac{\partial}{\partial \beta_{\text{trans}}} \log(L(\theta)) &= 0
\end{align*}
\]

2. Maximizing the (log-)likelihood

Problem:
we cannot observe the complete data, i.e., the complete series of micro-steps that lead from \[x(t_0) \] to \[x(t_1), \] from \[x(t_1) \] to \[x(t_2), \ldots \]

we cannot compute the \(L \) of the observed data

a stochastic approximation method must be applied.

1. Approximation

To approximate the (log-)likelihood we use the augmented data method

Definition
The augmented data (or sample path) consist of the sequence of tie changes that brings the network from \[x(t_0) \] to \[x(t_1) \]

\[(i_1,j_1), \ldots, (i_R,j_R) \]

Formally:
\[\mathcal{V} = \{(i_1,j_1), \ldots, (i_R,j_R)\} \in \mathcal{V} \]

where \(\mathcal{V} \) is the set of all sample paths connecting \(x(t_0) \) and \(x(t_1) \).

We can approximate the (log-)likelihood function (and then the score function) of the observed data using the probability of \(\mathcal{V} \)

\[
\log P(\mathcal{V}|x(t_0),x(t_1)) \propto \log \left(\frac{(n\lambda)^R R!}{e^{-n\lambda} n!} \prod_{r=1}^{R} \rho_{i_r,j_r}(\beta, x(T_r)) \right)
\]
2. Maximizing the (log-)likelihood

2. Updating rule

We would like to solve the equation:

$$\frac{\partial}{\partial \theta} \log(L(\theta)) = 0$$

Given \(\hat{\theta}_i \) and the corresponding approximation of the score function:

$$\frac{\partial}{\partial \theta} \log(L(\hat{\theta}_i; v_{im}^{(i)}))$$

we update the parameter estimate using the Robbins-Monro step

$$\theta_{i+1} = \theta_i + a_i D^{-1} \frac{\partial}{\partial \theta} \log(L(\hat{\theta}_i; v_{im}^{(i)}))$$

where \(D \) is a diagonal matrix with elements

$$D^{-1} = \left[\frac{\partial^2}{\partial \theta^2} \log(L(\hat{\theta}_i; v_{im}^{(i)})) \right]^{-1}$$

Outline

Introduction

The Stochastic actor-oriented model

Extending the model: analyzing the co-evolution of networks and behavior

- Selection and influence
- Model definition and specification
- Simulating the co-evolution of networks and behavior
- Parameter interpretation
- Parameter estimation

Something more on the SAOM

ERGMs and SAOMs

Networks are dynamic by nature: a real example

Ties and actors’ characteristics can change over time.
Networks are dynamic by nature: a real example
Ties and actors' characteristics can change over time.

Motivation

1. Social network dynamics can depend on actors' characteristics.

Selection process: relationship partners are selected according to their characteristics

Example
Homophily: the formation of relations based on the similarity of two actors
E.g. smoking behavior

Motivation

2. Changeable actors' characteristics can depend on the social network
E.g.: opinions, attitudes, intentions, etc. - we use the word behavior for all of these!

Influence process: actors adjust their characteristics according to the characteristics of other actors to whom they are tied

Example
Assimilation/contagion: connected actors become increasingly similar over time
E.g. smoking behavior

Competing explanatory stories

Homophily and assimilation give rise to the same outcome (similarity of connected individuals)

Study of influence requires the consideration of selection and vice versa.

Fundamental question: is this similarity caused mainly by influence or mainly by selection?

Extending the SAOM for the co-evolution of networks and behaviors
Competing explanatory stories

Example
Similarity in smoking:
Selection: “a smoker may tend to have smoking friends because, once somebody is a smoker, he or she is likely to meet other smokers in smoking areas and thus has more opportunities to form friendship ties with them”
Influence: “the friendship with a smoker may have made an actor smoking in the first place”

Assumptions
1. Distribution of the process.
 Changes between observational time points are modeled according to a continuous-time Markov chain.
 - State space C: all the possible configurations arising from the combination of network and behaviors
 $$|C| = 2^{n(n-1)} \times B^n$$
 where B is the number of categories for the behavior variable.
 - Markovian assumption: changes actors make are assumed to depend only on the current state of the network
 - Continuous-time:

Longitudinal network-behavior panel data

1. a network x represented by its adjacency matrix
2. a series of actors’ attributes:
 - H constant covariates V_1, \ldots, V_H
 - L behavior covariates $Z_1(t), \ldots, Z_L(t)$
 Behavior variables are ordinal categorical variables.

Longitudinal network-behavior panel data: networks and behaviors observed at $M \geq 2$ time points t_1, \ldots, t_M

$$(x,z)(t_0), (x,z)(t_1), \ldots, (x,z)(t_M)$$
and the constant covariates V_1, \ldots, V_H.

Assumptions
1. Distribution of the process.
 Changes between observational time points are modeled according to a continuous-time Markov chain.
 - State space C: all the possible configurations arising from the combination of network and behaviors
 $$|C| = 2^{n(n-1)} \times B^n$$
 where B is the number of categories for the behavior variable.
 - Markovian assumption: changes actors make are assumed to depend only on the current state of the network
 - Continuous-time:
Assumptions

1. **Distribution of the process.**
 Changes between observational time points are modeled according to a continuous-time Markov chain.
 - **State space** C: all the possible configurations arising from the combination of network and behaviors
 \[|C| = 2^{n(n-1)} \times B^n \]
 where B is the number of categories for the behavior variable.
 - **Markovian assumption**: changes actors make are assumed to depend only on the current state of the network and behavior
 - **Continuous-time**:

 ![Diagram of continuous-time Markov chain](image)

2. **Opportunity to change.**
 At any given moment one probabilistically selected actor has the opportunity to change one of his outgoing ties or his behavior.

 ![Diagram of opportunity to change](image)
Assumptions

2. **Opportunity to change.**
 At any given moment one probabilistically selected actor has the opportunity to change one of his outgoing ties or his behavior.

3. **Absence of co-occurrence.**
 At each instant t, only one actor has the opportunity to change (one of his outgoing ties or his behavior)

4. **Actor-oriented perspective.**
 Actors control their outgoing ties as well as their own behavior.
 - the actor decide to change one of his outgoing ties or his behavior trying to maximize a utility function
 - two distinct objective functions: one for the network and one for the behavior change
 - actors have complete knowledge about the network and the behaviors of all the other actors
 - the maximization is based on immediate returns (myopic actors)
Model definition

The co-evolution process is decomposed into a series of micro-steps:

- **network micro-step**: the opportunity of changing one network tie and the corresponding tie changed

- **behavior micro-step**: the opportunity of changing a behavior and the corresponding unit changed in behavior

Every micro-step requires the identification of a focal actor who gets the opportunity to make a change and the identification of the change outcome

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network changes</td>
<td>Network rate function</td>
</tr>
<tr>
<td>Behavioral changes</td>
<td>Behavioral rate function</td>
</tr>
</tbody>
</table>

The rate functions

The frequency by which actors have the opportunity to make a change is modeled by the *rate functions*, one for each type of change.

Why must we specify two different rate functions?

Practically always, one type of decision will be made more frequently than the other

Example

In the joint study of friendship and smoking behavior at high school, we would expect more frequent changes in the network than in behavior

The rate functions (simplest specification)

Network rate function

$T_{i,\text{net}} = \text{the waiting time until } i \text{ gets the opportunity to make a network change}$

$T_{i,\text{net}} \sim \text{Exp}(\lambda_{i,\text{net}})$

Behavior rate function

$T_{i,\text{beh}} = \text{the waiting time until } i \text{ gets the opportunity to make a behavior change}$

$T_{i,\text{beh}} \sim \text{Exp}(\lambda_{i,\text{beh}})$

Waiting time for a new micro-step

$T_{i,\text{net} \lor \text{beh}} = \text{the waiting time until } i \text{ gets the opportunity to make any change}$

$T_{i,\text{net} \lor \text{beh}} \sim \text{Exp}(\lambda_{\text{tot}})$

where

$\lambda_{\text{tot}} = \sum_i (\lambda_{i,\text{net}} + \lambda_{i,\text{beh}})$

Network rate function

$T_{i,\text{net}} = \text{the waiting time until } i \text{ gets the opportunity to make a network change}$

$T_{i,\text{net}} \sim \text{Exp}(\lambda_{i,\text{net}})$

Behavior rate function

$T_{i,\text{beh}} = \text{the waiting time until } i \text{ gets the opportunity to make a behavior change}$

$T_{i,\text{beh}} \sim \text{Exp}(\lambda_{i,\text{beh}})$

Waiting time for a new micro-step

$T_{i,\text{net} \lor \text{beh}} = \text{the waiting time until } i \text{ gets the opportunity to make any change}$

$T_{i,\text{net} \lor \text{beh}} \sim \text{Exp}(\lambda_{\text{tot}})$

where

$\lambda_{\text{tot}} = n(\lambda_{\text{net}} + \lambda_{\text{beh}})$
The rate functions (simplest specification)

Probabilities for an actor to make a micro-step

\[P(i \text{ can make a network micro-step}) = \frac{\lambda_{\text{net}}}{\lambda_{\text{tot}}} \]
\[P(i \text{ can make a behavioral micro-step}) = \frac{\lambda_{\text{beh}}}{\lambda_{\text{tot}}} \]

Probabilities for a micro-step

\[P(\text{network micro-step}) = \frac{n \lambda_{\text{net}}}{\lambda_{\text{tot}}} = \frac{\lambda_{\text{net}}}{\lambda_{\text{net}} + \lambda_{\text{beh}}} \]
\[P(\text{behavioral micro-step}) = \frac{n \lambda_{\text{beh}}}{\lambda_{\text{tot}}} = \frac{\lambda_{\text{beh}}}{\lambda_{\text{net}} + \lambda_{\text{beh}}} \]

The objective functions

Why must we specify two different objective functions?

- The **network objective function** represents how likely it is for \(i \) to change one of his outgoing ties
- The **behavioral objective function** represents how likely it is for the actor \(i \) the current level of his behavior

Network utility function

\[u_{\text{net}}^i(\beta, x(i \sim f), z, v) = f_{\text{net}}^i(\beta, x(i \sim f), z, v) + \mathcal{E}_{ij} = \sum_{k=1}^{K} \beta_k s_{ik}^{\text{net}}(x, z, v) + \mathcal{E}_{ij} \]

Behavioral utility function

\[u_{\text{beh}}^i(\gamma, z(l \sim l'), x, v) = f_{\text{beh}}^i(\gamma, z(l \sim l'), x, v) + \mathcal{E}_{ll'} = \sum_{w=1}^{W} \gamma_w s_{i(l \sim l')}^w(x, z(l \sim l'), v) + \mathcal{E}_{ll'} \]

where
- \(s_{i(l \sim l')}^w(x, z(l \sim l'), v) \) are effects
- \(\gamma_w \) are statistical parameters
- \(\mathcal{E}_{ll'} \) is a random term (Gumbel distributed)

The basic shape effects must be always included in the model specification

\[z_{\text{linear}}^{\text{beh}}(x, z', v) = z'_i \]
\[z_{\text{quadratic}}^{\text{beh}}(x, z', v) = (z'_i)^2 \]

The basic shape effects must be always included in the model specification

The probability that an actor \(i \) changes his own behavior by one unit is:

\[p_{ll'}(i) = \frac{\exp(f_{\text{beh}}^i(\gamma, z(l \sim l'), x, v))}{\sum_{l'' \in \{i+1,i-1,i\}} \exp(f_{\text{beh}}^i(\gamma, z(l \sim l''), x, v))} \]

\(p_{ll'}(i) \) is the probability that \(i \) does not change his behavior.

N.b. In the following we will write \(z' \) instead of \(z(i \sim l') \)
The objective functions

The specification of the behavioral objective function

- Classical influence effects

1. The average similarity effect

\[s_{\text{avsim}}^{\text{beh}}(x, z', v) = \frac{1}{n} \sum_{j=1}^{n} x_{ij} (\text{sim}_{z'}(ij) - \text{sim}_z) \]

where

\[\text{sim}_{z'}(ij) = 1 - \frac{|z'_i - z'_j|}{R_z} \]

\(R_z \) is the range of the behavior \(z \) and \(\text{sim}_z \) is the mean similarity value

N.b.: \(z'_i = z_i \)

The objective functions

The specification of the behavioral objective function

- Position-dependent influence effects

Network position could also have an effect on the behavior of dynamics

1. Outdegree effect

\[s_{\text{out}}^{\text{beh}}(x, z', v) = z'_i \sum_{j=1}^{n} x_{ij} \]

2. Indegree effect

\[s_{\text{in}}^{\text{beh}}(x, z', v) = z'_i \sum_{j=1}^{n} x_{ji} \]

- Effects of other actor variables.

For each actor’s attribute a main effect on the behavior can be included in the model

Simulating the co-evolution of networks and behavior

Aim: given \((x, z)(t_0)\) and fixed parameter values, provide \((x, z)^{\text{sim}}(t_1)\) according to the process behind the SAOM

\[\Downarrow \]

reproduce a possible series of network and behavior micro-steps between \(t_0 \) and \(t_1 \)

Input

- \(n \) = number of actors
- \(\lambda^{\text{net}} \) = network rate parameter (given)
- \(\lambda^{\text{beh}} \) = behavior rate parameter (given)
- \(\beta = (\beta_1, \ldots, \beta_K) \) = objective function parameters (given)
- \(\gamma = (\gamma_1, \ldots, \gamma_W) \) = objective function parameters (given)
- \((x, z)(t_0)\) = network and behavior at time \(t_0 \) (given)

Output

\((x, z)^{\text{sim}}(t_1)\) = network and behavior at time \(t_1 \)
Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: $x(t_0), z(t_0), \lambda_{net}, \lambda_{beh}, \beta, \gamma, n$
Output: $x^{sim}(t_1), z^{sim}(t_1)$
t ← 0; $x ← x(t_0)$; $z ← z(t_0)$
while condition = TRUE do
 $dt_{net} \sim \text{Exp}(n\lambda_{net})$
 $dt_{beh} \sim \text{Exp}(n\lambda_{beh})$
 if $\min(dt_{net}, dt_{beh}) = dt_{net}$ then
 $i \sim \text{Uniform}(1, ..., n)$
 $j \sim \text{Multinomial}(p_{1_1}, ..., p_{n_1})$
 if $i \neq j$ then
 $x ← x(i \mapsto j)$
 $t ← t + dt_{net}$
 else
 $i \sim \text{Uniform}(1, ..., n)$
 $l' \sim \text{Multinomial}(p_{(i-1)_j}, p_{(i+1)}_j, p_{(l+1)})$
 if $l \neq l'$ then
 $z ← z(l \mapsto l')$
 $t ← t + dt_{beh}$
 end
 return $x^{sim}(t_1), z^{sim}(t_1)$

Simulating the co-evolution of networks and behavior

Algorithm 2:
Input: $x(t_0), z(t_0), \lambda_{net}, \lambda_{beh}, \beta, \gamma, n$
Output: $x^{sim}(t_1), z^{sim}(t_1)$
t ← 0; $x ← x(t_0)$; $z ← z(t_0)$
while condition = TRUE do
 $dt_{net} \sim \text{Exp}(n\lambda_{net})$
 $dt_{beh} \sim \text{Exp}(n\lambda_{beh})$
 if $\min(dt_{net}, dt_{beh}) = dt_{net}$ then
 $i \sim \text{Uniform}(1, ..., n)$
 $j \sim \text{Multinomial}(p_{1_1}, ..., p_{n_1})$
 if $i \neq j$ then
 $x ← x(i \mapsto j)$
 $t ← t + dt_{net}$
 else
 $i \sim \text{Uniform}(1, ..., n)$
 $l' \sim \text{Multinomial}(p_{(i-1)_j}, p_{(i+1)}_j, p_{(l+1)})$
 if $l \neq l'$ then
 $z ← z(l \mapsto l')$
 $t ← t + dt_{beh}$
 end
 else
 $x^{sim}(t_1) ← x$
 $z^{sim}(t_1) ← z$
 return $x^{sim}(t_1), z^{sim}(t_1)$

Which micro-step is going to happen?
If $dt_{net} < dt_{beh}$ then a network micro-step takes place
The following steps are the same as those in Algorithm 1
Which micro-step is going to happen?
If $dt_{beh} < dt_{net}$ then a behavior micro-step takes place
Simulating the co-evolution of networks and behavior

Algorithm 2:

Input: $x(t_0), z(t_0), \lambda_{net}, \lambda_{beh}, \beta, \gamma, \eta$
Output: $x^{sim}(t_1), z^{sim}(t_1)$
$t \leftarrow 0; x \leftarrow x(t_0); z \leftarrow z(t_0)$
while condition $= \text{TRUE}$ do
 $dt_{net} \sim \text{Exp}(n_{net})$
 $dt_{beh} \sim \text{Exp}(n_{beh})$
 if $\min(dt_{net}, dt_{beh}) = dt_{net}$ then
 $i \sim \text{Uniform}(1,\ldots,n)$
 $j \sim \text{Multinomial}(p_1,\ldots,p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \rightarrow j)$
 $t \leftarrow t + dt_{net}$
 else
 $\sim \text{Uniform}(1,\ldots,n)$
 $l' \sim \text{Multinomial}(P_{i(1-1) \ldots P_{i(l+1)}})$
 if $l \neq l'$ then
 $z \leftarrow z(l \rightarrow l')$
 $t \leftarrow t + dt_{beh}$
 $x^{sim}(t_1) \leftarrow x$
 $z^{sim}(t_1) \leftarrow z$
return $x^{sim}(t_1), z^{sim}(t_1)$

Simulating the co-evolution of networks and behavior

Algorithm 2:

Input: $x(t_0), z(t_0), \lambda_{net}, \lambda_{beh}, \beta, \gamma, \eta$
Output: $x^{sim}(t_1), z^{sim}(t_1)$
$t \leftarrow 0; x \leftarrow x(t_0); z \leftarrow z(t_0)$
while condition $= \text{TRUE}$ do
 $dt_{net} \sim \text{Exp}(n_{net})$
 $dt_{beh} \sim \text{Exp}(n_{beh})$
 if $\min(dt_{net}, dt_{beh}) = dt_{net}$ then
 $i \sim \text{Uniform}(1,\ldots,n)$
 $j \sim \text{Multinomial}(p_1,\ldots,p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \rightarrow j)$
 $t \leftarrow t + dt_{net}$
 else
 $\sim \text{Uniform}(1,\ldots,n)$
 $l' \sim \text{Multinomial}(P_{i(1-1) \ldots P_{i(l+1)}})$
 if $l \neq l'$ then
 $z \leftarrow z(l \rightarrow l')$
 $t \leftarrow t + dt_{beh}$
 $x^{sim}(t_1) \leftarrow x$
 $z^{sim}(t_1) \leftarrow z$
return $x^{sim}(t_1), z^{sim}(t_1)$

Simulating the co-evolution of networks and behavior

Algorithm 2:

Input: $x(t_0), z(t_0), \lambda_{net}, \lambda_{beh}, \beta, \gamma, \eta$
Output: $x^{sim}(t_1), z^{sim}(t_1)$
$t \leftarrow 0; x \leftarrow x(t_0); z \leftarrow z(t_0)$
while condition $= \text{TRUE}$ do
 $dt_{net} \sim \text{Exp}(n_{net})$
 $dt_{beh} \sim \text{Exp}(n_{beh})$
 if $\min(dt_{net}, dt_{beh}) = dt_{net}$ then
 $i \sim \text{Uniform}(1,\ldots,n)$
 $j \sim \text{Multinomial}(p_1,\ldots,p_n)$
 if $i \neq j$ then
 $x \leftarrow x(i \rightarrow j)$
 $t \leftarrow t + dt_{net}$
 else
 $\sim \text{Uniform}(1,\ldots,n)$
 $l' \sim \text{Multinomial}(P_{i(1-1) \ldots P_{i(l+1)}})$
 if $l \neq l'$ then
 $z \leftarrow z(l \rightarrow l')$
 $t \leftarrow t + dt_{beh}$
 $x^{sim}(t_1) \leftarrow x$
 $z^{sim}(t_1) \leftarrow z$
return $x^{sim}(t_1), z^{sim}(t_1)$
Simulating the co-evolution of networks and behavior

1. **Unconditional** simulation:
 - simulation carries on until a predetermined time length has elapsed (usually until \(t = 1 \)).

2. **Conditional** simulation on the observed number of changes:
 - simulation runs on until

 \[
 \sum_{i,j=1 \atop i \neq j}^{n} |X_{ij}^{\text{obs}}(t_1) - X_{ij}(t_0)| = \sum_{i,j=1}^{n} |X_{ij}^{\text{sim}}(t_1) - X_{ij}(t_0)|
 \]
 - simulation runs on until

 \[
 \sum_{i=1}^{n} |z_{i}^{\text{obs}}(t_1) - z_{i}(t_0)| = \sum_{i=1}^{n} |z_{i}^{\text{sim}}(t_1) - z_{i}(t_0)|
 \]

Example

Example data: excerpt from the “Teenage Friends and Lifestyle Study” data set

We will use the SAOM for the co-evolution of networks and behaviors to distinguish influence from selection.

1. Do pupils select friends based on similar smoking behavior?
2. Are pupils influenced by friends to adjust to their smoking behavior?

Dependent variables: friendship networks and smoking behavior

Covariate: gender

Precondition of the analysis

To find out whether it makes sense to analyze the data with a co-evolution model one should check whether:

1. the data are sufficiently informative

\[
J = \frac{N_{11}}{N_{11} + N_{01} + N_{10}} > 0.3
\]

Jacard index

Precondition of the analysis

2. there is interdependence between network and behavioral variables

\[
I = \frac{n \sum_{j} x_{j}(z_{i} - \bar{z})(z_{j} - \bar{z})}{ \left(\sum_{j} x_{j} \right) \left(\sum_{j} (z_{j} - \bar{z})^{2} \right) }
\]

Moran index

where \(\bar{z} \) is the mean of \(z \) over all the periods

Negative auto-correlation \[\rightarrow \] **Positive auto-correlation** \[\rightarrow \] **No auto-correlation**
Precondition of the analysis

The computation of the index I for the data leads to

\[
0.244 \quad 0.258 \quad 0.341
\]

Conclusion:
there is considerable dependence between networks and behaviors
and it is reasonable to apply the SAOM

```
moran1 <- nacf(tobacco[,1], lag.max=1, neighborhood.type = "out", type="moran", mode="digraph")
moran2 <- nacf(tobacco[,2], lag.max=1, neighborhood.type = "out", type="moran", mode="digraph")
moran3 <- nacf(tobacco[,3], lag.max=1, neighborhood.type = "out", type="moran", mode="digraph")
moranInd <- c(moran1[2], moran2[2], moran3[2])
```

Parameter interpretation: a baseline model

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant friendship rate (period 1)</td>
<td>8.6287</td>
<td>0.6666</td>
<td></td>
</tr>
<tr>
<td>constant friendship rate (period 2)</td>
<td>7.2489</td>
<td>0.5466</td>
<td></td>
</tr>
<tr>
<td>outdegree (density)</td>
<td>-2.4084</td>
<td>0.0407</td>
<td>-59.1268</td>
</tr>
<tr>
<td>reciprocity</td>
<td>2.7024</td>
<td>0.0823</td>
<td>32.8337</td>
</tr>
</tbody>
</table>

Behavior Dynamics

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate smokebeh (period 1)</td>
<td>3.8922</td>
<td>1.9689</td>
<td></td>
</tr>
<tr>
<td>rate smokebeh (period 2)</td>
<td>4.4813</td>
<td>2.3679</td>
<td></td>
</tr>
<tr>
<td>behavior smokebeh linear shap</td>
<td>-3.5464</td>
<td>0.4394</td>
<td>-8.0712</td>
</tr>
<tr>
<td>behavior smokebeh quadratic shape</td>
<td>2.8464</td>
<td>0.3628</td>
<td>7.8447</td>
</tr>
</tbody>
</table>

Network objective function parameters:
- outdegree parameter: the observed networks have low density
- reciprocity parameter: strong tendency towards reciprocated ties

Network rate parameters:
- about 9 opportunities for a network change in the first period
- about 7 opportunities for a network change in the second period

Parameter interpretation: a baseline model

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant friendship rate (period 1)</td>
<td>8.6287</td>
<td>0.6666</td>
<td></td>
</tr>
<tr>
<td>constant friendship rate (period 2)</td>
<td>7.2489</td>
<td>0.5466</td>
<td></td>
</tr>
<tr>
<td>outdegree (density)</td>
<td>-2.4084</td>
<td>0.0407</td>
<td>-59.1268</td>
</tr>
<tr>
<td>reciprocity</td>
<td>2.7024</td>
<td>0.0823</td>
<td>32.8337</td>
</tr>
</tbody>
</table>

Behavior Dynamics

<table>
<thead>
<tr>
<th></th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate smokebeh (period 1)</td>
<td>3.8922</td>
<td>1.9689</td>
<td></td>
</tr>
<tr>
<td>rate smokebeh (period 2)</td>
<td>4.4813</td>
<td>2.3679</td>
<td></td>
</tr>
<tr>
<td>behavior smokebeh linear shap</td>
<td>-3.5464</td>
<td>0.4394</td>
<td>-8.0712</td>
</tr>
<tr>
<td>behavior smokebeh quadratic shape</td>
<td>2.8464</td>
<td>0.3628</td>
<td>7.8447</td>
</tr>
</tbody>
</table>

Behavioral rate parameters:
- about 4 opportunities for a behavioral change in the first period
- about 4 opportunities for a behavioral change in the second period
Parameter interpretation: a baseline model

Network Dynamics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant friendship rate (period 1)</td>
<td>8.6287</td>
<td>0.6666</td>
<td></td>
</tr>
<tr>
<td>Constant friendship rate (period 2)</td>
<td>7.2489</td>
<td>0.5466</td>
<td></td>
</tr>
<tr>
<td>Outdegree (density)</td>
<td>-2.4084</td>
<td>0.0407</td>
<td>-59.1268</td>
</tr>
<tr>
<td>Reciprocity</td>
<td>2.7024</td>
<td>0.0823</td>
<td>32.8337</td>
</tr>
</tbody>
</table>

Behavior Dynamics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimates</th>
<th>s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate smokebeh (period 1)</td>
<td>3.8922</td>
<td>1.9689</td>
</tr>
<tr>
<td>Rate smokebeh (period 2)</td>
<td>4.8133</td>
<td>2.3679</td>
</tr>
<tr>
<td>Behavior smokebeh linear shape</td>
<td>-3.5464</td>
<td>0.4394</td>
</tr>
<tr>
<td>Behavior smokebeh quadratic shape</td>
<td>2.8464</td>
<td>0.3628</td>
</tr>
</tbody>
</table>

Behavioral objective function parameters:

- Attractiveness of different behavioral levels based on the current structure of the network and the behavior of the others.

A more complex model

The baseline model does not provide any information about selection and influence processes:

- The network dynamics are explained by the preference towards creating and reciprocating ties.
- The behavior dynamics are described only by the distribution of the behavior in the population.

If we want to distinguish selection from influence we should include in the objective functions specification:

- The effects that capture the dependence of social network dynamics on actor's characteristic.
- The effects that capture the dependence of behavior dynamics on social network.

- Smoking behavior: coded with 1 for "no", 2 for "occasional", and 3 for "regular" smokers.

- The smoking covariate is centered: \(z = 1.377 \) is the mean of the covariate.

\[
\begin{align*}
 z_i - z &= \begin{cases}
 -0.377 & \text{for no smokers} \\
 0.623 & \text{for occasional smokers} \\
 1.623 & \text{for regular smokers}
 \end{cases}
\end{align*}
\]

- The contribution to the behavioral objective function is

\[
\gamma_{\text{linear}}(z_i - z) + \gamma_{\text{quadratic}}(z_i - z)^2 =
\]

\[
-3.5464(z_i - z) + 2.8464(z_i - z)^2
\]

U-shaped changes in the behavior are drawn to the extreme of the range.
A more complex model

Effects for the dependence of network dynamics on actor’s characteristic

- pupils prefer to establish friendship relations with others that are similar to themselves → covariate similarity

 ![Diagram](image1)

This effect must be controlled for the sender and receiver effects of the covariate.

- Covariate ego effect

 ![Diagram](image2)

- Covariate alter effect

 ![Diagram](image3)

A more complex model

Effects for the dependence of behavior dynamics on network

- pupils tend to adjust their smoking behavior according to the behaviors of their friends → average similarity effect

 ![Diagram](image4)

This effect must be controlled for the indegree and the outdegree effects

- Indegree effect

 ![Diagram](image5)

- Outdegree effect

 ![Diagram](image6)

A more complex model

<table>
<thead>
<tr>
<th>Network Dynamics</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant friendship rate (period 1)</td>
<td>10.7166</td>
<td>(1.4036)</td>
<td></td>
</tr>
<tr>
<td>constant friendship rate (period 2)</td>
<td>9.0005</td>
<td>(0.7709)</td>
<td></td>
</tr>
<tr>
<td>outdegree (density)</td>
<td>-2.8435</td>
<td>(0.0572)</td>
<td>-49.6776</td>
</tr>
<tr>
<td>reciprocity</td>
<td>1.9683</td>
<td>(0.0933)</td>
<td>21.1077</td>
</tr>
<tr>
<td>transitive triplets</td>
<td>0.4447</td>
<td>(0.0322)</td>
<td>13.7964</td>
</tr>
<tr>
<td>sex ego</td>
<td>0.1612</td>
<td>(0.1206)</td>
<td>1.3368</td>
</tr>
<tr>
<td>sex alter</td>
<td>-0.1476</td>
<td>(0.1064)</td>
<td>-1.3871</td>
</tr>
<tr>
<td>sex similarity</td>
<td>0.9104</td>
<td>(0.0882)</td>
<td>10.3244</td>
</tr>
<tr>
<td>smoke ego</td>
<td>0.0665</td>
<td>(0.0846)</td>
<td>0.7857</td>
</tr>
<tr>
<td>smoke alter</td>
<td>0.1121</td>
<td>(0.0761)</td>
<td>1.4719</td>
</tr>
<tr>
<td>smokebeh similarity</td>
<td>0.5114</td>
<td>(0.1735)</td>
<td>2.9479</td>
</tr>
</tbody>
</table>

A more complex model

Network objective function parameters:

tendency towards reciprocity, transitivity and homophily with respect to gender
A more complex model

<table>
<thead>
<tr>
<th>Network Dynamics</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant friendship rate (period 1)</td>
<td>10.7166</td>
<td>1.4036</td>
<td></td>
</tr>
<tr>
<td>constant friendship rate (period 2)</td>
<td>9.0005</td>
<td>0.7709</td>
<td></td>
</tr>
<tr>
<td>outdegree (density)</td>
<td>-2.8435</td>
<td>0.0572</td>
<td>-49.6776</td>
</tr>
<tr>
<td>reciprocity</td>
<td>1.9683</td>
<td>0.0933</td>
<td>21.1077</td>
</tr>
<tr>
<td>transitive triplets</td>
<td>0.4447</td>
<td>0.0322</td>
<td>13.7964</td>
</tr>
<tr>
<td>sex ego</td>
<td>0.1612</td>
<td>0.1206</td>
<td>1.3368</td>
</tr>
<tr>
<td>sex alter</td>
<td>-0.1476</td>
<td>0.1064</td>
<td>-1.3871</td>
</tr>
<tr>
<td>sex similarity</td>
<td>0.9104</td>
<td>0.0882</td>
<td>10.3244</td>
</tr>
<tr>
<td>smoke ego</td>
<td>0.0665</td>
<td>0.0846</td>
<td>0.7857</td>
</tr>
<tr>
<td>smoke alter</td>
<td>0.1121</td>
<td>0.0761</td>
<td>1.4719</td>
</tr>
<tr>
<td>smokebeh similarity</td>
<td>0.5114</td>
<td>0.1735</td>
<td>2.9479</td>
</tr>
</tbody>
</table>

Network objective function parameters:
- pupils selected others with similar smoking behavior as friends
 → evidence for selection process

The contribution to the network objective function is given by:

\[
\beta_{\text{ego}}(z_i - \bar{z}) + \beta_{\text{alter}}(z_j - \bar{z}) + \beta_{\text{same}} \left(1 - \frac{|z_i - z_j|}{\bar{z}}\right) = 0.0665(z_i - 1.377) + 0.1121(z_j - 1.377) + 0.5114 \left(1 - \frac{|z_i - z_j|}{\bar{z}}\right)
\]

- preference for similar alters
- this tendency is strongest for high values on smoking behavior

<table>
<thead>
<tr>
<th>Behavior Dynamics</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate smokebeh (period 1)</td>
<td>3.9041</td>
<td>1.7402</td>
<td></td>
</tr>
<tr>
<td>rate smokebeh (period 2)</td>
<td>3.8059</td>
<td>1.4323</td>
<td></td>
</tr>
<tr>
<td>behavior smokebeh linear shape</td>
<td>-3.3573</td>
<td>0.5678</td>
<td>-5.9129</td>
</tr>
<tr>
<td>behavior smokebeh quadratic shape</td>
<td>2.8406</td>
<td>0.4125</td>
<td>6.8864</td>
</tr>
<tr>
<td>behavior smokebeh indegree</td>
<td>0.1711</td>
<td>0.1612</td>
<td>0.9444</td>
</tr>
<tr>
<td>behavior smokebeh outdegree</td>
<td>0.0128</td>
<td>0.1026</td>
<td>0.0662</td>
</tr>
<tr>
<td>behavior smokebeh average similarity</td>
<td>3.4361</td>
<td>1.4170</td>
<td>2.4250</td>
</tr>
</tbody>
</table>

Behavioral objective function parameters:
- U-shaped distribution of the smoking behavior

<table>
<thead>
<tr>
<th>Behavior Dynamics</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate smokebeh (period 1)</td>
<td>3.9041</td>
<td>1.7402</td>
<td></td>
</tr>
<tr>
<td>rate smokebeh (period 2)</td>
<td>3.8059</td>
<td>1.4323</td>
<td></td>
</tr>
<tr>
<td>behavior smokebeh linear shape</td>
<td>-3.3573</td>
<td>0.5678</td>
<td>-5.9129</td>
</tr>
<tr>
<td>behavior smokebeh quadratic shape</td>
<td>2.8406</td>
<td>0.4125</td>
<td>6.8864</td>
</tr>
<tr>
<td>behavior smokebeh indegree</td>
<td>0.1711</td>
<td>0.1612</td>
<td>0.9444</td>
</tr>
<tr>
<td>behavior smokebeh outdegree</td>
<td>0.0128</td>
<td>0.1026</td>
<td>0.0662</td>
</tr>
<tr>
<td>behavior smokebeh average similarity</td>
<td>3.4361</td>
<td>1.4170</td>
<td>2.4250</td>
</tr>
</tbody>
</table>

Behavioral objective function parameters:
- indegree and outdegree effects are not significant
The contribution to the behavioral objective function is given by:

\[\gamma_{\text{linear}}(z_i - \bar{z}) + \gamma_{\text{quadratic}}(z_i - \bar{z})^2 + \gamma_{\text{sim}} \frac{1}{n} \sum_{j=1}^{n} x_j (\text{sim}_2(\bar{y}) - \text{sim}_2) = \]

\[= -3.3573(z_i - \bar{z}) + 2.8406(z_i - \bar{z})^2 + 3.4361 \frac{1}{n} \sum_{j=1}^{n} x_j (\text{sim}_2(\bar{y}) - 0.7415) \]

where \(\text{sim}_2(\bar{y}) = 1 - \frac{|z_i - z_j|}{R_2} = 1 \)

Example

a) \(i \) adjusts his behavior to “no-smoker” when all of his friends are no-smokers

\[\text{sim}_2(\bar{y}) = 1 - \frac{1-1}{2} = 1 \]

\[-3.3573(1 - 1.377) + 2.8406(1 - 1.377)^2 + 3.4361(1 - 0.7415) = 2.56 \]

b) \(i \) adjusts his behavior to “no-smoker” when all of his friends are occasional smokers

\[\text{sim}_2(\bar{y}) = 1 - \frac{|1-1|}{2} = 0.5 \]

\[-3.3573(1 - 1.377) + 2.8406(1 - 1.377)^2 + 3.4361(0.5 - 0.7415) = 0.84 \]
A more complex model

The contribution to the behavioral objective function is given by:
\[\gamma_{\text{linear}} (z_i - \bar{z}) + \gamma_{\text{quadratic}} (z_i - \bar{z})^2 + \gamma_{\text{avsim}} \frac{1}{n} \sum_{j=1}^{n} x_{ij} (\text{sim}_z(j) - \bar{z}_i) = \]
\[= -3.3573 \gamma_{\text{linear}} (z_i - \bar{z}) + 2.8406 \gamma_{\text{quadratic}} (z_i - \bar{z})^2 + 3.4361 \frac{1}{n} \sum_{j=1}^{n} x_{ij} (\text{sim}_z(j) - 0.7415) \]

<table>
<thead>
<tr>
<th>(z_i / \bar{z})</th>
<th>no</th>
<th>occasional</th>
<th>regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>2.36</td>
<td>-1.92</td>
<td>-0.31</td>
</tr>
<tr>
<td>occasional</td>
<td>0.84</td>
<td>-0.10</td>
<td>1.20</td>
</tr>
<tr>
<td>regular</td>
<td>-0.88</td>
<td>-1.82</td>
<td>2.92</td>
</tr>
</tbody>
</table>

- the focal actor prefers to have the same behavior as all these friends (except for the occasional smokers)
- friends do not smoke at all: the preference toward imitating their behavior is less strong

The parameter estimation (MoM)

We can estimate the \(2M + K + W \)-dimensional parameter \(\theta \) using the MoM

In practice:
1. find \(2M + K + W \) statistics
2. set the theoretical expected value of each statistic equal to its sample counterpart
3. solve the resulting system of equations
 \[E_\theta [S - s] = 0 \]

with respect to \(\theta \)

Statistics:

- Network rate parameters for the period \(m \)
 \[s^{\text{net}}_\lambda(X(t_m), X(t_{m-1}), |X(t_m) - X(t_{m-1})|) \]
- Behavior rate parameters for the period \(m \)
 \[s^{\text{beh}}_\lambda(Z(t_m), Z(t_{m-1}), |Z(t_m) - Z(t_{m-1})|) \]
 \[m = 1, \ldots, M \]
The parameter estimation (MoM)

Statistics:

- Network objective function effects
\[
\sum_{m=1}^{M} s^\text{net}_{m} ((X, Z, V)(t_m)|(X, Z, V)(t_{m-1})) = \sum_{m=1}^{M} s^\text{net}_{m} ((X, Z, V)(t_m),(X, Z, V)(t_{m-1}))
\]

- Behavior objective function effects
\[
\sum_{m=1}^{M} s^\text{beh}_{m} ((X, Z, V)(t_m)|(X, Z, V)(t_{m-1})) = \sum_{m=1}^{M} s^\text{beh}_{m} ((X, Z, V)(t_m),(X, Z, V)(t_{m-1}))
\]

Example
Let us assume to have observed a network at \(M = 3 \) time points

![Network diagram](image)

We want to model the network evolution according to the outdegree, the reciprocity, the linear shape and the quadratic shape effects

\[
\theta = (\lambda_1^\text{net}, \lambda_2^\text{net}, \lambda_1^\text{beh}, \lambda_2^\text{beh}, \beta_\text{out}, \beta_\text{rec}, \gamma_\text{linear}, \gamma_\text{quadratic})
\]

Consequently the MoM estimator for \(\theta \) is provided by the solution of:

\[
\begin{align*}
E_\theta \left[s^\text{net}_{m}(X(t_m), X(t_{m-1})|X(t_{m-1})) \right] &= s^\text{net}_{X_m}(X(t_m), X(t_{m-1})) & m = 1, \ldots, M \\
E_\theta \left[s^\text{net}(Z(t_m), Z(t_{m-1})|Z(t_{m-1})) \right] &= s^\text{net}(Z(t_m), Z(t_{m-1})) & m = 1, \ldots, M \\
E_\theta \left[\sum_{m=1}^{M} s^\text{net}_{m}(X, Z, V)() \right] &= \sum_{m=1}^{M} s^\text{net}_{m}(x, z, v(t_m)) & k = 1, \ldots, K \\
E_\theta \left[\sum_{m=1}^{M} s^\text{beh}_{m}(X, Z, V)() \right] &= \sum_{m=1}^{M} s^\text{beh}(x, z, v(t_m)) & w = 1, \ldots, W
\end{align*}
\]

Example
Statistics for the network evolution:

\[
\begin{align*}
s^\text{net}_{m}(X(t_1), X(t_0)|X(t_0)) &= \sum_{i,j=1}^{4} |X_{ij}(t_1) - X_{ij}(t_0)| \\
s^\text{net}_{m}(X(t_2), X(t_1)|X(t_1)) &= \sum_{i,j=1}^{4} |X_{ij}(t_2) - X_{ij}(t_1)| \\
M \sum_{m=1}^{m} s^\text{net}(X(t_m)|X(t_{m-1}) = x(t_{m-1})) &= \sum_{m=1}^{M} \sum_{i,j=1}^{4} X_{ij}(t_m) \\
M \sum_{m=1}^{m} s^\text{beh}(X(t_m)|X(t_{m-1}) = x(t_{m-1})) &= \sum_{m=1}^{M} \sum_{i,j=1}^{4} X_{ij}(t_m)X_{ij}(t_m)
\end{align*}
\]
The parameter estimation (MoM)

Example

Statistics for the behavior evolution:

\[s_{\lambda_{beh}}(Z(t_1), Z(t_0)) = Z(t_1) - Z(t_0) \]

\[s_{\lambda_{beh}}(Z(t_2), Z(t_1)) = Z(t_2) - Z(t_1) \]

\[\sum_{m=1}^{M} s_{\text{linear}}(Z(t_m)) = \sum_{m=1}^{M} Z(t_m) \]

\[\sum_{m=1}^{M} s_{\text{quadratic}}(Z(t_m)) = \sum_{m=1}^{M} Z^2(t_m) \]

The parameter estimation (MoM)

Example

We look for the value of \(\theta \) that satisfies the system:

\[
\begin{align*}
E_\theta[s_{\lambda_{\text{net}}}^1] &= 3 \\
E_\theta[s_{\lambda_{\text{net}}}^2] &= 4 \\
E_\theta[s_{\lambda_{\text{beh}}}^1] &= 2 \\
E_\theta[s_{\lambda_{\text{beh}}}^2] &= 4 \\
E_\theta[S_{\text{out}}] &= 12 \\
E_\theta[S_{\text{rec}}] &= 10 \\
E_\theta[S_{\text{linear}}] &= 12 \\
E_\theta[S_{\text{quadratic}}] &= 20
\end{align*}
\]

In a more compact notation, we look for the value of \(\theta \) that satisfies the system:

\[E_\theta[S - s] = 0 \]

but we know that we cannot solve it analytically.

The solution is again provided by the Robbins-Monro algorithm.
Creating and deleting ties

Terminating a tie is not just the opposite of creating a tie

Example

- the loss in terminating a tie is greater than the reward in creating one
- transitivity plays an important role especially in creating ties

This is modeled by adding to the objective function one of the two components:

1. the *creation function*
2. the *endowment function*

The creation function

Models the gain in satisfaction incurred when a network tie is created:

\[c_i(\delta, x) = \sum_k \delta_k s_{ik}(x) \]

where

- \(\delta_k \) are statistical parameters
- \(s_{ik}(x) \) are the effects

The utility function for an actor \(i \) when he creates a new tie is provided by:

\[u_i(x) = f_i(\beta, x) + c_i(\delta, x) + \epsilon_i(t, x, j) \]

The creation function is zero for the dissolution of ties

The endowment function

Models the loss in satisfaction incurred when a network tie is deleted

\[e_i(\eta, x) = \sum_k \eta_k s_{ik}(x) \]

where

- \(\eta_k \) are statistical parameters
- \(s_{ik}(x) \) are the effects

The utility function for an actor \(i \) when he deletes a tie is provided by:

\[u_i(x) = f_i(\beta, x) + e_i(\eta, x) + \epsilon_i(t, x, j) \]

The endowment function is zero for the creation of ties
Creating and deleting ties - Remarks

- creation and deletion functions must not be included when ties mainly are created or terminated
- it could also happen that increasing a behavior is not the same as decreasing a behavior. Thus, there are also:
 1. the creation behavior function
 2. the endowment behavior function
but their usage is still under investigation

Creating and deleting ties

Example

Example data: excerpt from the “Teenage Friends and Lifestyle Study” data set

We estimate the SAOM for investing the evolution of friendship networks according to:
- outdegree
- reciprocity
- transitivity
- reciprocity for the endowment function

myeff <- includeEffects(myeff,transTrip)
myeff <- includeEffects(myeff,recip,type="endow")
mymodel <- sienaModelCreate(useStdInits = FALSE, projname = 'tfls')
model1 <- siena07(mymodel, data = mydata, effects=myeff,useCluster=TRUE,
nbrNodes=2, useIC=TRUE,clusterString=rep("localhost", 2))

Creating and deleting ties

Example

<table>
<thead>
<tr>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate parameter period 1</td>
<td>6.70</td>
<td>0.73</td>
</tr>
<tr>
<td>Rate parameter period 2</td>
<td>5.81</td>
<td>0.58</td>
</tr>
<tr>
<td>Other parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>outdegree</td>
<td>-2.58</td>
<td>0.05</td>
</tr>
<tr>
<td>reciprocity</td>
<td>3.23</td>
<td>0.29</td>
</tr>
<tr>
<td>reciprocity (endow)</td>
<td>2.23</td>
<td>0.58</td>
</tr>
<tr>
<td>transitive triplets</td>
<td>0.44</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The utility function for an actor \(i \) when he deletes a tie is provided by:

\[
\begin{align*}
u_i(x) &= f_i(\beta, x) + \xi_i(\eta, x) + \epsilon_i(t, x, j) \\
&= \beta_{out} s_{i, out}(x) + \beta_{rec} s_{i, rec}(x) + \beta_{trans} s_{i, trans}(x) + \eta_{rec} s_{i, rec}(x) \\
&= -2.58 s_{i, out}(x) + 3.23 s_{i, rec}(x) + 0.44 s_{i, trans}(x) - 2.23 s_{i, rec}(x)
\end{align*}
\]
Creating and deleting ties

Example

+ Estimates s.e. t-score

<table>
<thead>
<tr>
<th>Rate parameters:</th>
<th>Estimates</th>
<th>s.e.</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate parameter period 1</td>
<td>8.44</td>
<td>0.73</td>
<td>11.35</td>
</tr>
<tr>
<td>Rate parameter period 2</td>
<td>7.09</td>
<td>0.58</td>
<td>12.47</td>
</tr>
</tbody>
</table>

Other parameters:

- outdegree: -2.58 ± 0.05 (t-value: -51.62)
- reciprocity: 3.23 ± 0.29 (t-value: 11.15)
- reciprocity (endow): 2.23 ± 0.58 (t-value: 3.85)
- transitive triplets: 0.44 ± 0.03 (t-value: 14.55)

Conclusions:

1. The formation of reciprocal ties is more rewarding than the formation of a non-reciprocal tie.
2. The dissolution of reciprocal ties is more costly than the dissolution of a non-reciprocal tie and the creation of a reciprocal tie.
Non-directed relations

For directed relation we assumed that:

1. an actor gets the opportunity to make a change
2. he decided for the change that assures him the highest payoff

Are these assumptions still reliable when we consider undirected relations such as: collaboration, trade, strategic alliance?

- Yes, if one actor (dictator) can impose a decision about a tie to another
- No, if there is coordination or negotiation about a tie

Non-directed relations

1. Dictatorial choice: \(i \) chooses his action and imposes his decision to \(j \)
Actor 1 evaluates the alternatives and the corresponding objective functions

Non-directed relations

E.g. actor 1 imposes his choice to actor 2
Non-directed relations

2. Mutual agreement: both actors must agree
 Actor 1 gets the opportunity to change

Non-directed relations

2. Mutual agreement: both actors must agree
 Actor 1 evaluates the alternatives and the corresponding objective functions

Non-directed relations

2. Mutual agreement: both actors must agree
 Actor 1 suggests to modify the tie towards actor 2

Non-directed relations

2. Mutual agreement: both actors must agree
 Actor 2 evaluates the proposal of actor 1

\[P(2 \text{ accepts tie proposal}) = \frac{\exp(f_2(x^{+12}))}{\exp(f_2(x^{+12})) + \exp(f_2(x^{-12}))} \]
Non-directed relations - Tie-based approach

A couple \((i,j)\) of actors is selected with rate \(\lambda_{ij}\) and gets the opportunity to revise the tie among them

1. Dictatorial choice: one actor can impose the decision (e.g. actor 1)

\[
P(1 \text{ imposes a tie on } 2) = \frac{\exp(f_1(x^{+12}))}{\exp(f_1(x^{-12})) + \exp(f_1(x^{+12}))}
\]

2. Mutual agreement: both actors propose a tie

Actor 1 and 2 created a tie with probability

\[
P(+12) = \frac{\exp(f_1(x^{+12})) \exp(f_2(x^{+12}))}{\exp(f_1(x^{-12})) + \exp(f_1(x^{+12})) + \exp(f_2(x^{-12}))}
\]

3. Compensatory: the decision is made on the combined interest

Actor 1 and 2 choose their action with probability

\[
P(+12) = \frac{\exp(f_1(x^{+12}) + f_2(x^{+12}))}{\exp(f_1(x^{+12}) + f_2(x^{+12})) + \exp(f_1(x^{-12}) + f_2(x^{-12}))}
\]
- Improving the estimation procedures (MLE)
- New estimation procedures (Bayesian estimation)
- Goodness of fit of the model
- Model selection
- Time-heterogeneity tests
- Missing data
- Analysis of multiple relations
- ...

Recap: ERGMs

ERGMs are models for cross-sectional data:

they return the probability of an observed graph \(G \in \mathcal{G} \) as a function of statistics \(g_i(G) \) and statistical parameters \(\theta_i \)

\[
P(G) = \frac{\exp\left(\sum_{i=1}^{k} \theta_i \cdot g_i(G)\right)}{\kappa(\theta)}
\]

Examples of statistics \(g_i(G) \) are:

- edges
- triangles
- 2-stars
- ...
Recap: SAOMs

SAOMs are models for longitudinal data:

- the rate function \(\lambda \)
- the objective function

\[
f_i(\beta, x(i \sim j), v_i, v_j) = \sum_{k=1}^{K} \beta_k s_k(x(i \sim j))
\]

where the statistics \(s_k(x(i \sim j)) \) are:

edges, reciprocal dyads, transitive triads, 2-in-stars, ...

SAOMs and ERGMs

Although ERGMs and SAOMs have different aims and require different data, the same statistics are used as explanatory variables in both models.

This might suggest the existence of a "statistical" relation between ERGMs and SAOMs.

We are going to prove that:

1. ERGMs are the limiting distribution of the process described by a certain specification of SAOMs
2. ERGMs are the limiting distribution of the process described by a tie-based version of SAOMs

Background: intensity matrix

Definition

Let \(\{X(t), t \in \mathcal{T}\} \) be a continuous-time Markov chain whose transition probabilities are defined by:

\[
P(X(t_j) = \tilde{x} | X(t) = x, \forall t \leq t_j) = P(X(t_j) = x | X(t_i) = x)
\]

for each pair \((x, \tilde{x})\).

There exists a function \(q : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) such that

\[
q(x, \tilde{x}) = \lim_{dt \to 0} \frac{P(X(t + dt) = \tilde{x} | X(t) = x)}{dt}
\]

\[
q(x, x) = \lim_{dt \to 0} \frac{P(X(t + dt) = x | X(t) = x)}{dt} - 1
\]

The function \(q \) is called **intensity matrix** of the process.

The element \(q(x, \tilde{x}) \) is referred to as the rate at which the process in state \(x \) tends to change into \(\tilde{x} \)

Background (recall): limiting distribution

Definition

The **limiting distribution** \(P \) of a continuous-time Markov chain \(\{X(t), t \in \mathcal{T}\} \) is defined as

\[
P_{\tilde{x}} = \lim_{t \to \infty} P(X(t_j) = \tilde{x} | X(t_i) = x)
\]

Therefore, the limiting distribution of \(\{X(t), t \in \mathcal{T}\} \) is the distribution that describes the probability of jumping from \(x \) to \(\tilde{x} \) in the long run behavior of the process.

\(P_{\tilde{x}} \) is also the stationary distribution of the process.
Background (recall):
irreducible aperiodic Markov chain and limiting distribution

Definition
A continuous-time Markov chain is **irreducible** if there is a path between any states x and \tilde{x}.

A continuous-time Markov chain is **aperiodic** if the greatest common divisor of the length of all cycles equals one.

Theorem
If $\{X(t), t \in \mathcal{T}\}$ is an irreducible and aperiodic continuous-time Markov chain and the detailed balance condition holds

$$P(x, \tilde{x} \cdot q(\tilde{x}, x) = P(x, x \cdot q(x, \tilde{x}))$$

then P_x is the unique limiting (stationary) distribution of $\{X(t), t \in \mathcal{T}\}$.

ERGMs and SAOMs
Let us now consider a particular SAOM:
- objective function for each actor i
 $$f_i(\beta, x(i \sim j)) = \sum_{k=1}^{K} \beta_k s_k(x(i \sim j))$$
- rate parameter for actor i
 $$\lambda_i = \sum_{h=1}^{n} \exp(\beta's(x(i \sim h)))$$

i.e., actors for whom changed relations have a higher value, will indeed change their relation more quickly.

Computing the limiting distribution of SAOMs
We can prove that ERGMs

$$P(X = x) = \frac{\exp(\sum_{k=1}^{K} \beta_k s_k(x))}{\kappa(\theta)} = \frac{\exp(\beta's(x))}{\kappa(\theta)}$$

are the unique stationary distribution of the SAOM defined before.

Proof
1. Existence of a unique invariant distribution
 - q is irreducible: each network configuration can be reached from any other network configuration in a finite number of steps
 - q is aperiodic: at each time point t an actor i has the opportunity not to change anything and, thus, the period of each state is equal to 1
Computing the limiting distribution of SAOMs

Proof (continue)

2. ERGMs are the stationary distribution of Q

In fact, given two states x and $x(i \sim j)$ of $\{X(t), \ t \in \mathcal{T}\}$ the balance equation holds when ERGMs is the stationary distribution:

$$ P_{x(i \sim j)} \cdot q(x(i \sim j), x) = \frac{\exp(\beta' s(x(i \sim j)))}{\kappa(\theta)} \cdot \frac{\exp(\beta' s(x))}{\kappa(\theta)} $$

$$ = \frac{\exp(\beta' s(x))]}{\kappa(\theta)} \cdot \frac{\exp(\beta' s(x(i \sim j)))]}{\kappa(\theta)} $$

$$ = P_{x} \cdot q(x, x(i \sim j)) $$

SAOMs for non-directed relations - Tie-based approach

We assume that
- each dyad (i,j) can be selected with the same rate λ
- the objective function is:

$$ f_{ij}(\beta, x) = \sum_{i=1}^{k} \beta_{k} s_{ijk}(x) = \beta' s_{ij} x $$

where $s_{ijk}(x)$ are statistics such as

- edges
- triangles
- 2-stars
- ...

but considered from the point of view each pair (i,j) instead of the point view of a certain actor.

SAOMs for non-directed relations - Tie-based approach

A couple (i,j) of actors is selected with rate λ_{ij} and gets the opportunity to revise the tie among them

Joint decision: the decision is made on the payoff deriving from the tie

Actor 1 and 2 choose their action with probability

$$ p(x^{+12}) = \frac{\exp(f_{ij}(x^{+12}))}{\exp(f_{ij}(x^{+12}))+\exp(f_{ij}(x^{-12}))} $$

SAOMs for non-directed relations - Tie-based approach

Assuming that at each time point only one pair (i,j) can be selected, the rate function λ and the objective function $f_{ij}(\beta, x)$ define a continuous time Markov-chain with intensity matrix Q:

$$ q(x, x^{+12}) = \lambda p(x^{+12}) = \lambda \frac{\exp(\beta' s_{ij}(x^{+12}))}{\exp(\beta' s_{ij}(x^{+12}))+\exp(\beta' s_{ij}(x^{-12}))} $$

$$ q(x, x^{-12}) = \lambda p(x^{-12}) = \lambda \frac{\exp(\beta' s_{ij}(x^{-12}))}{\exp(\beta' s_{ij}(x^{+12}))+\exp(\beta' s_{ij}(x^{-12}))} $$

The limiting distribution of q is again ERGMs
Computing the limiting distribution of tie-based SAOMs

Proof

1. Existence of a unique invariant distribution

- \(q \) is irreducible: each network configuration can be reached from any other network configuration in a finite number of steps

- \(q \) is aperiodic: at each time point \(t \) a pair \((i,j) \) has the opportunity not to change anything and, thus, the period of each state is equal to 1

Proof (continue)

2. ERGMs are the stationary distribution of \(Q \)

In fact, given the two states \(x^{-ij} \) and \(x^{+ij} \) of \(\{X(t), t \in T\} \) the balance equation holds when ERGMs is the stationary distribution:

\[
P_{x^{-ij}} q(x^{-ij}, x^{+ij}) = e^{\beta's(x^{-ij})} \frac{\lambda}{\kappa(\theta)} \cdot \frac{e^{\beta's(x^{+ij})}}{1 + e^{\beta's(x^{-ij})} - \beta's(x^{+ij})}
\]

\[
P_{x^{+ij}} q(x^{+ij}, x^{-ij}) = e^{\beta's(x^{+ij})} \frac{\lambda}{\kappa(\theta)} \cdot \frac{e^{\beta's(x^{-ij})}}{1 + e^{\beta's(x^{+ij})} - \beta's(x^{-ij})}
\]

\[\ast \]

\[\ast \]

\[
(\ast) \quad \beta's(x^{-ij}) - \beta's(x^{+ij})
\]