Assignment 9

Post Date: 19 Dec 2012 Due Date: 9 Jan 2013, 14:30
You are permitted and encouraged to work in groups of two.

Throughout these assignments, we denote by boundary function the function
\[B(j) = \begin{cases} -1, & j = 0 \\ |\partial(P[1, \ldots, j])| = \text{sup}_P(P[2, \ldots, j]), & j = 1, \ldots, m \end{cases} \]
assigning to the length of a prefix of a pattern \(P[1, \ldots, m] \) the length of its proper boundary.

Problem 1: Knuth-Morris-Pratt and Boyer-Moore 8 Points

(a) Compute the boundary function for the pattern
\[P = \text{ababbaababababbab} \]
(b) Compute the bad character function and the good suffix function for the alphabet
\(\Sigma = \{0, 1, 2, 3\} \) and the pattern
\[P = 0101101201. \]

Problem 2: Transition Function 8 Points

Let \(\delta \) be the transition function of a pattern \(P[1, \ldots, m] \).

(a) Show that \(\delta(q, a) = \delta(B[q], a) \) for any \(a \in \Sigma \) and \(0 < q \leq m \) with \(q = m \) or \(P[q + 1] \neq a \).
(b) Give an \(\mathcal{O}(m|\Sigma|) \)-time algorithm for computing the transition function \(\delta \) corresponding to a given pattern \(P \) of length \(m \).

Problem 3: Repetition Factor 4 Points

Let \(P \) be a pattern of length \(m \). For a \(q = 1, \ldots, m \) let
\[\rho(q) = \max \{r; P[1, \ldots, q] = x^r \text{ for some } x \in \Sigma^*\} \]
Prove or disprove that \(\rho(q) > 1 \) if and only if there is an \(i > 0 \) with \(B^i(q) > 0 \) and
\[q - B^i(q) = \frac{B^i(q)}{\rho(B^i(q))}. \]

Merry Christmas and a happy New Year!