Assignment 8

Post Date: 12 Dec 2012 Due Date: 19 Dec 2012, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: FIFO Vertex Selection Rule 8 Points

Show that the run time of the algorithm of Goldberg & Tarjan applied to a flow network with n vertices is in $O(n^3)$ if it is implemented by using the FIFO vertex selection rule as follows: First all vertices that are activated during the initialization are appended to a queue. While the queue is not empty the algorithm removes the first vertex v from the queue, performs PUSH-operations from v and appends newly active vertices to the queue. The algorithm examines v until it is not active any more or a RELABEL-operation is performed. In the latter case v is appended again to the queue.

Hint: Partition the vertex examinations into phases. The first phase consists of examinations of vertices that become active during the initialization. The $(i+1)$st phase consists of examinations of vertices that were appended to the queue during the ith phase. Use the potential function

$$
\Phi = \max_{v \text{ active}} h(v)
$$

to show that there are at most $O(n^2)$ phases.

Problem 2: Naive String Matching 6 Points

(a) Suppose that all characters in the pattern are different. Show how to accelerate the naive string-matching algorithm such that it runs in $O(n)$ time on an n-character text.

(b) Find a text and a pattern such that the naive string-matching algorithm needs $\Theta((n - m + 1) \cdot m)$ time even if the pattern does not occur in the text.

(c) Suppose that pattern P and text T are randomly chosen strings of length m and n, respectively, from the d-ary alphabet $\Sigma = \{0, 1, \ldots, d - 1\}$, where $d \geq 2$. Show that the expected number of character-to-character comparisons in every step made by the naive string-matching algorithm is

$$
\frac{1 - d^{-m}}{1 - d^{-1}} \leq 2.
$$
Problem 3: Wildcards 6 Points

Now, a pattern can contain also wildcards *. A wildcard * can stand for arbitrarily many (also zero) characters.

(a) Modify the algorithms Naive-Transition-Function and Finite-Automaton-Matcher such that they also work for patterns that may contain wildcards. Explain your approach.

(b) Give the string-matching automaton for the pattern $P = aba*bab$ and the input alphabet $\Sigma = \{a, b, c\}$. Does this automaton find all occurrences of pattern P in a text?