Assignment 4

Post Date: 14 Nov 2012 Due Date: 21 Nov 2012, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: Sequence of Operations 6 Points

Consider sequences of operations \textsc{makeset}, \textsc{find} with path compression, and weighted \textsc{union} where all \textsc{union} operations are performed before the first \textsc{find} operation.

(a) Show that the amortized cost for \(n \) operations is in \(O(n) \).

(b) Does (a) hold if \textsc{find} is still with path compression but \textsc{union} is unweighted?

(c) Does (a) hold if \textsc{union} is still weighted but \textsc{find} is without path compression?

Problem 2: Union-Find with Path Compression 4 Points

(a) Give a pseudocode for \textsc{find} with path compression similar to the pseudocode of \textsc{find} without path compression from the lecture.

(b) Consider \textsc{find} with the following alternative path compression: After traversing the path from a vertex to its root, we update the parent pointer of each vertex along the path to point to its grandparent. Consider, e.g., subpath

\[
i \rightarrow j \rightarrow k \rightarrow l \rightarrow \cdots
\]

Performing \textsc{find}(i) with alternative path compression results in \(k \) being predecessor of \(i \) and \(l \) being predecessor of \(j \). Direct successors of the root keep the root as predecessor. Go through the proof of the \textit{Theorem of Hopcroft \\& Ullman} and find the inferences that require \textsc{find} to be implemented with path compression. Is the proof still correct if the alternative path compression is used?
Problem 3: Equivalence of Finite Automata

Let A_1 and A_2 be finite automata with sets of states Q_1 and Q_2, respectively.

Determine for each state $p \in Q_1$ the set $Q_p := \{q \in Q_2; q \equiv p\}$. Decide whether A_1 and A_2 are equivalent.

Problem 4: Prüfer Sequence

(a) Determine for the following tree the Prüfer sequence.

(b) Construct from the Prüfer sequence $(4, 9, 4, 6, 6, 5, 1)$ the corresponding tree.