Assignment 12

Post Date: 19 Jan 2011 Due Date: 26 Jan 2011, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: Ukkonen’s Algorithm

5 Points

Compute a suffix tree for $T = ababbaa \in \Sigma^*$, $\Sigma = \{a, b\}$, with the algorithm of Ukkonen and explain the procedure in detail. Also, indicate the suffix links for all internal vertices of the suffix tree.

Problem 2: Location

5 Points

Let $sTree(T)$ be a suffix tree for $T \in \Sigma^*$. Assume that the alphabet Σ has constant size. Let P be a pattern that occurs in T.

Give an algorithm in pseudocode that computes the location of P such that the running time is linear in the size of the traversed vertices.

Problem 3: Longest Common Substring

6 Points

Give a linear-time algorithm that computes the longest common substring of two strings S_1 and S_2 over the alphabet $\Sigma = \{a, b, c, \ldots, x, y, z\}$. For example, $S_1 = ararat$ and $S_2 = tiara$, then the longest common substring of S_1 and S_2 is ara.

Problem 4: Algorithm of Boyer & Moore

4 Points

Show how to compute $s_P^{\text{pref}}(j) = \text{suf}_P(P[j+1, \ldots, m])$ by using the failure function π of the Knuth-Morris-Pratt Matcher.