Assignment 11

Post Date: 12 Jan 2011 Due Date: 19 Jan 2011, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: Wildcards

Now, a pattern can contain also wildcards \(\ast \). A wildcard \(\ast \) can stand for arbitrarily many (also zero) characters.

(a) Modify Algorithm Naive-Transition-Function such that it computes a string-matching automaton of a pattern that may contain wildcards.

Consider the pattern \(P = aba \ast bab \) and the input alphabet \(\Sigma = \{a, b, c\} \).

(b) Give the string-matching automaton for the pattern \(P \) computed by your algorithm from (a). Does this automaton find all occurrences in a text of pattern \(P \)?

Problem 2: Transition Function

(a) Give an \(O(m|\Sigma|) \)-time algorithm for computing the transition function \(\delta \) corresponding to a given pattern \(P \) with \(|P| = m \).

(b) Let \(P = abaababa \) be a pattern over the alphabet \(\Sigma = \{a, b\} \). Compute for \(1 \leq q \leq |P| \) the values \(\pi(q) \), where \(\pi(q) \) is defined as in the lecture.

Problem 3: Cyclic Rotation

Determine in linear time if a text \(T \) is a cyclic rotation of a text \(T' \).

Problem 4: Suffix Tree

(a) Give a naive algorithm for computing a suffix tree for a text \(T \) in \(O(n^2) \), where \(|T| = n \), and where the size of the alphabet is constant.

(b) Use the example \(T = ararat \) to demonstrate your algorithm.

(c) Show that a suffix tree has \(O(n) \) vertices.