Assignment 7

Available Since: June 01, 2011 Due Date: June 08, 2011, 2:30 p.m.

You are permitted and encouraged to work in groups of two.

Exercise 1: Euler’s Formula 6 Points

Show that
\[n - m + f = 1 + k \]
for a planar simple undirected graph with \(n \) vertices, \(m \) edges, \(f \) faces, and \(k \) connected components and conclude that
\[m \leq 3n - 6 \]
if \(n \geq 3 \).

Is there a planar simple undirected graph in which every vertex has degree higher than five?

Exercise 2: Canonical Ordering 6 Points

Let \(G = (V, E) \) be a planar triangulated graph with \(n \geq 3 \) vertices. An ordering \(v_1, \ldots, v_n \) of the vertices of \(G \) is a canonical ordering if \(v_1, v_2, v_n \) are the vertices on the outer face of \(G \) and for each \(j = 3, \ldots, n - 1 \), there are
\[1 \leq i_1 < i_2 < j < k \leq n \] such that \(\{v_{i_1}, v_j\}, \{v_{i_2}, v_j\}, \{v_j, v_k\} \in E \).

Show that a triangulated planar graph always admits a canonical ordering.

Hint: Consider inductively for \(i = n - 1, \ldots, 3 \) the set \(C_i \) of vertices on the outer face of the graph induced by \(V \setminus \{v_{i+1}, \ldots, v_n\} \). Choose \(v_i \in C_i \setminus \{v_1, v_2\} \) such that \(v_i \) is adjacent to exactly two vertices of \(C_i \).