Assignment 4

Available Since: May 11, 2011 Due Date: May 18, 2011, 2:30 p.m.
You are permitted and encouraged to work in groups of two.

Exercise 1: Exponential Area Requirement 6 Points

Let $G_n = (V_n, E_n), n \in \mathbb{N}$ be recursively defined as follows.

- $V_0 = \{s_0, t_0\}$ and $E_0 = \{(s_0, t_0)\}$.
- $V_n = V_{n-1} \cup \{s_n, t_n\}$ and $E_n = E_{n-1} \cup \{(t_{n-1}, t_n), (s_n, s_{n-1}), (s_{n-1}, t_n), (s_n, t_n)\}$.

Let the embedding of G_n be such, that (s_{n-1}, t_n) is on the right hand side and (s_n, t_n) on the left hand side of G_{n-1}.

(a) Prove that G_n is series-parallel.

(b) Consider an upward planar, embedding-preserving, straight-line drawing of G_n. Let $A(G_n)$ be the area of the triangle with vertices s_n, t_n, and s_{n-1}. Show that

$$A(G_n) \geq 4 \cdot A(G_{n-1}).$$

Hint: Consider the horizontal lines through s_{n-1} and t_{n-1}, and the straight line through s_{n-1} and s_{n-2}. Find out where t_n and s_n could possibly be drawn and consider then the straight line through t_n and t_{n-1}.

(c) Conclude that $A(G_n) \in \Omega(4^n)$.
Exercise 2: Decomposition Tree 6 Points

Consider a directed multigraph. In the beginning each edge is ladled with a tree that consists of a single vertex labeled Q. Consider the following two types of reduction steps.

Series reduction Let v be a vertex with in- and outdegree one. Let (u, v) labeled T_1 and (v, w) ladled T_2 be the edges that are incident to v. Replace v and its incident edges by the single edge (u, w) labeled with the tree that consists of a root labeled S with left subtree T_1 and right subtree T_2.

Parallel reduction Replace two edges of the form (u, v) labeled T_1 and T_2 by one edge of the form (u, v) labeled with the tree that consists of a root labeled P with left subtree T_1 and right subtree T_2.

(a) Show that if a directed multigraph is series-parallel then it can be reduced by a sequence of series and parallel reductions to a graph that contains one edge.

(b) Show that if a directed multigraph G can be reduced by a sequence of series and parallel reductions to a graph that contains one edge than the label of this last edge is a decomposition tree of G.